RECORDS

OF THE

SURVEY OF INDIA

Volume I
$1909=10$

Prepared under the Direction of
Colonel S. G. BURRARD, c.s.I., R.E., f.R.S.
Surveyor General of India

Fhoto.-Engraved \& printed at the Offices of the Survey of 1ndia, Calcutta, 1911

COlonel R. A. WAHAB, C.B., C.M.G., C.I.E., R.E.
Retired as Deputy Surveyor General, 31st August 1905.

PREFACE.

TOR many years the Annual Report of the Survey of India consisted of two parts, namely (1) abstracts of results, and (2) narrative reports of exccutive officers. Since the year 1900-01 the narrative reports have been excluded from the Annual Report of the Survey and have been published as a separate volume entitled Extracts from Narrative Reports. This last title has been not altogether satisfactory; the reports by executive officers are frequently not narratives of events, but discussions of data. The volume will be hampered if it is to be confined to narratives: it will be more useful if explanatory statements can be included in it. The title of the volume is therefore being changed, and it will in future be known as "Records of the Survey of India."

Frontispience-Portrait of Colonel Wahab, R.E.

PART I.

I.-Topographical Survey.

Northern Circle.-Report by Colonel W. J. Bythell, R.E. 1
No. 1 Party.-Report by Lieutenant J. D. Campbell, R.E. 1
No. 3 Party.-Report by Captain A. A. McHarg, R.E. 2
No. 4 Party.-Report by Captain L. C. Thullier, I.A. 3
The R verain Detachnent-Report by Mr. Maya Das Pu:i 5
Southern Circle.-Report by Colonel T. F. B. Renny-Tailyour, R.E. . . . $\mathbf{6}$
No. 5 Parly.-Report by Colonel T. F. B. Renny-Tailyour, R.E. . . . 7
Extract from report by Major C. L. Robertson, C.M.G., R.E. . 7
No. 6 Parly.-Report by Colonel T. F. B. Renny-Tailyour, R.E. . . . 8
Extract from report by Captain H. Wood, R.E. . . . 9
No. 7 Party.-Report by Colonel T. F. B. Renny-Tailyour, R.E. . . . 10
Extract from report by Leutenant A. H. Gwyn, I.A. . . 11
No. 8 Pa,ty.-Report by Colonel T. F. B. Renny-Tailyour, R.E. . . . 11
Extract from report by Lieutenant S. W. S. Hamilton, R.E. . $1 ?$
Eastern Circle.-Report by Colonel G. B. Hodgson, I.A. 1 ?
No. 10 Paty.—Report by Colonel G. B. Hodgson, I.A. 13
No. 11 Party.-Report by Colonel G. B. Hodgson, I.A. 15
No. 12 Party.-Report by Colonel G. B. Hodgson, I.A. 15
Hlustration-A ferry in Upper Burma . . . facing 17
Table of outturns, plane-tabling 18
Table of outturns, triangulation, traversing and levelling 19
Table of costs and cost-rates 20
Index maps, survey, N., S. and E. Circles . . . facing 30
Table shewing progress in survey and publication of 1 -inch standard sheets . 22

> II.-Triangulation.

No. 15 Party.-Report by Major H. H. Turner, R.E. 24
Illustration-Kolahoi Peak facing 24
Index chart, triangulation, etc. facing 32
Index chart, triangulation, " degree" charts . . . facing 32
III.-Levellina.

No. 17 Parly.-Report by Mr. C. F. Erskine 33
IV.-Geodetic Survey. $\quad \Rightarrow$

No. 13 Party.-(A.) Astronomical latitudes 55
Report by Major H. L. Crosthwait, R.E.
N@. 14 Party.-(B.) Pendulum operations $6 i$
Report by Captain H. M. Cowie, R.E.
V.--Magnetic Survey.

No. 18 Yarty.-Report by Captain H. J. Couchman, R.E. 63
Index chart, Magnetic survey facing 76
VI.-Tidal Operations.

No. 16 Party.-Report by Mr. C. F. Erskine 118
VII.-Physiographioal Changes. Page $_{6}$
Note by Colonel S. G. Burrarà, R.E., F.R.S. 136
PART II.
I. Photo-Litho Office-
Extract from report by Licutenant O. H. B. Trenchard, R.E. 137
iI. Mathematical Instrument Office-
Extract from report by Captain R. H. Thomes, R.E. 140
Index map, publication, $\frac{1}{\mathrm{M}}$ sheets following 141
Index map, publication degree sh ets $1+1$
Index maps, pullication, 1 -inch standard sheets 141
N., S. and E. Circles.

RECORDS OF

THE SURVEY OF INDIA.

PART I.

I.-Topographical Survey.

NORTHERN CIRCLE.

By Brevet-Colonel W. J. Pythell, R.E.
(Vide Index map, page 21.)

No. 1 (late 14) party carried out no triangulation during the year under report. It surveyed an area of 5,1005 square miles on the 1 -inch bcale in the Abbottabad district of the North-West Frontier Province and in the Rawalpindi. Jhelum, Gujrat and Shahpur districts of the Punjab, and in the Poonch district of Kashmir.

No. 3 (late 12) party carried out no triangulation or traversing, but ran 336.6 linear miles of levelling, and surveyed $3,234.7$ square miles on the 1 -inch scale in the Jhang, Shahpur, Lyallpur and Mianwali districts of the Punjab. This was partly a re-survey and partly new survey, and was entirely based on traverses carried out in previous seasons.

No. 4 (late 18) party triangulated 1,250 square miles, chiefly in the Salt Range, and surveyed $1,552.07$ square miles on the 2 -inch scale and $1,762 \cdot 3$ square miles on the 1 -inch scale in the Mianwali, Attock and Shahpur districts of the Punjab. It also traversed 492 linear miles in the Shahpur district in advance of detail survey, and a special traverse detachment of this party traversed over an area of 6,000 square miles in districts Lucknow, Unao, Hardoi, Sitapur, Bara-Banki and RaeBareli of the United Provinces. This will form the basis for the detail survey of field season 1910-11 which will be carried out by this party.

The Riverain Detachment, which was this year brought under the direct supervision of the Superintendent, traversed $637 \cdot 23$ linear miles of main traverse and $1,650 \cdot 13$ linear miles of minor traverse along the river Sutlej (districts Ludhiana and Jullundur), on the river Beas (district Amritsar and Kapurthala State), and on the river Ravi (districts Amritsar and Sialkot).

Forest Surveys.

No. 4 (late 18) party surveyed an area of $318 \cdot 27^{-3}$ square miles of forest areas (chiefly rakhs) in the Jhelum and Shahpur divisions of those districts, chiefly in the Salt Range.

No other forests were surveyed by parties of this circle, but No. 1 (late 14) party revised an area of 117 square miles of fairly modern forest survey, in the Jhelum diştrict, south-west of Sohawa, and in the Naoshera district of Kashmir.

$$
\text { No. } 1 \text { (LATE 14) PARTY. }
$$

By Lieutenant J. D. Campbell, R.E.
The head-quarters of the party remained at Rawalpindi throughout tha. field season.

Personnel.
Imperial Officers.
Major C. H. D. Kyder, D.S.O., R.E., in charge Irom 1st October 1900 to 13th July 1910.

Lieutenant J. D. Camplell, R.E., attached from 2nd to 13th July 1910 and in charge from 14th July 1910.

Lieutenant A. A. Chass, R.E.

Provincial Officers.

c Messrs. T. W. Babonau, H. H. B. Hanby, H. B. Simons (up to 14th March 1910), R. C. Hanson (from 24th November 1909), W. J. B. Miller and W. P. Hales.

Uppir subordinate Scrvice.
Babu Natha Singh, Rai Sahib.
Lower Subordinate Service.
35 Surveyors, etc.

The area under survey lay in the Abbottabad district of the North-West Frontier Province, the Rawalpindi, Jhelum, Gujrat and Shalpur districts of the Punjab, and in Kashmir and Jammu. The country under survey was of an exceedingly varied nature, including as it did the dead level plains of Gujrat and Shahpur, the broken raviny country of Rawalpindi and Jhelum, the Murree Hills, and the slopes of the Pir Panjal range in Kashmir.

Operations in the field commenced at the end of October 1909 and the party returned to recess quarters at Mussooree on various dates between the l5th April and the beginning of June 1910.

Topography.

The area surveyed on the scale of 1 inch $=1$ mile was $5,100 \cdot 5$ square miles.
The party was divided into three camps under Messrs. Babonau, Hanby and Simons.

On Mr. Simons' transfer, Lieutenant Chase held charge of his camp, and towards the close of the field season Mr . Hanson took charge of a camp, surveying three sheets.

The following sheets were completed: $43_{\overline{1,2,3,4,5,6,7,8,0}, \frac{6}{10,11,13,14,15,10}}$, $43_{i, 2,0,10,13,13}$, this being 4 sheets in excess of the original programme.

Fair-mapping.

Sheets $43 \underset{\mathrm{io},-13,14}{\mathrm{~F}}$ have been submitted for publication during the year and the remainder will be submitted before the party takes the field.

No. 3 (LATE 12) PARTY.

By Captain A. A. McHarg, R.E.
The party worked in the Jhang, Lyallpur, Shahpur and Mianwali districts

Pergonnel.
Strength of party.
Lieutennnt E. C. Baker, R.E., in charge from the 21st May 1909 until the 27th of October 1909.

Captain A. A. McHarg, R.E., Deputy Superinwondent in charge during the remainder of the year.
Aseistants:-
Mr. J. A. Froemen, Extra Assistant Superintendent, 4th grade.

Mr. B. M. Berrill, Extre Aesistant Superintendent, 5th grado.

Mr. B. C. Nowland, Officiating Extra Assistant Superintendent, 0th grade.
Mr. F. H. Grant, Sub-Assistant Superintendont, last grade.

Mr. H. H. P. Butterfield, Sub-Ageistant Su. perintendent, 2nd grade.

Mr. F. E. R. Calvert, Sub-Assistant Superintendent, 2nd grade.

Mr, Jiya Lal, Sub-Aasistant Superintendent, 3rd grado.

25 Surveyors, permanent and tomporary.
2 Apprentice Surveyore.
3 Soldier Surveyora.
2 Clersa.
1 Typer.
1 Computer.
in the Punjab.
The field office opened at Jhang in the Punjab on the 8th of November 1909. Field work was closed on the 30th of April 1910. Work started in recess at Mussooree on the 4 th of May 1910.
The outturn of the party for the season is as follows :-

One-inch survey of the whole of standard sheets $44 \underset{3, \overline{6}, 0,7,8,8,10,11,13,14,15 a n d 10}{ }$, parts of $39 \frac{\mathrm{M}}{0,15}$ and parts of $44 \frac{\mathrm{~A}}{40.012}$, and 336 linear miles of levelling.

During recess all the twelve standard sheets surveyed during the year, viz.,
 and forwarded to the Superintendent, Northern Circle, for submission to the reproducing offices.

The country surveyed lay mostly in the Jhelum and Chenab Canal Colonies, the former being partly in the Shahpur and Jhang districts and lying between the Jhelum and Chenab rivers and the latter in the Lyallpur and Jhang districts eas of the Chenab river.

The whole of this country was flat with the exception of a few isolated hills in sheets $44 \frac{1}{0 \text { and } 19}$ and very much cut up by canals. Most of the country is already under cultivation and presumably the whole area available will later on be taken up.

The average height of the area surveyed is about 550 feet above sea level.
The Chenab being an older canal colony than the Jhelum is very much better wooded. The latter is at present very deficient in this respect.

A certain small area was surveyed in the "Thal" (or sandy hills) portion of the Jhang, Shahpur and Mianwali districts.

This country consists of a sandy plain about 50 feet higher than the country along the Jhelum and Chenab river banks, with more or less parallel ridges of sand hills about 10 to 15 feet higher on the average than the plain, very sparsely wooded, with little water and a few villages scattered here and there, chiefly inhabited by graziers and camel-owners whose flocks of sheep and camels keep continually moving on to new grazing grounds.

In the Canal Colonies Messrs. Grant and Butterfield made considerable use of the patwaris' chak maps, plotting the chaks on their plane-tables and then correcting them wherever necessary in the field. If this could have been done by the party before taking the field a nuch greater outturn would have been the result, but unless properly supervised it is not work that can be left to the average surveyor to do by himself; however (on future occasions in similar country) steps will be taken to make considerably more use of the patwaris' maps than was the case during the year under report. These maps are as a rule very correct and necessarily up to date, and provided they are correctly transferred to the plane-tables, should be of invaluable assistance.

336 miles of levelling was carried out. This was chiefly of use in connecting up the rgilway, canal and G. T. data and giving heights to points in areas outside the irrigation limits.

In both the Canal Colonies canat contoured maps (contours at 1 foot intervals) have been used for giving heights to cross-roads, corners of villages, etc., on the fair sheets.

No. 4 (LATE 18) PARTY.

By Captain L. C. Thuillier, I.A.
The field head-quarters of the party remained at Mianwali throughout

Personnel,

Captain L. C. Thuillier, I.A., Deputy Superintendent in charge.

Ciptain M. N. MacLeod, R.E., Assistant Superintendent.

Mr. G. J. S. Rae, Extra Assistant Superiatendent, 3rd grade.

Mr. H. W. Bigrie, Ertra Assistant Superintendent, 4th grade.

Mr. C. E. C. French, Extra Assistant Superintendent, 5 th grade.

Mr. Maya Des Puri, Extra Assistant Super. intendent, 6th grade (up to 30th June 1910).

Mr. A. B. Hunter, Extra Assistant Superin. tendent, 6th grade.

Mr. F. C. Pilcher, Sub-Assistant Superintendent, lst grade (up to 23rd September 1910). Mr, Aldul Aziz, Sub-Assistant Superintondent, 2nd grade (up to 30th September 1910).

Mr. H. T. Hughes, Sub-Assiatant Superintendent, 2nd grade (up to 30th May 1910).
Babu Vidja Nath Suri, Probationer, Upper Subordinate Sorvice (from lat April 1910).

the field season and opened there on 1st November. Recess head-quarters continued at Mussooree.

Previous to this the Shahpur traverse section commenced work on 11th October at Khushab and an advance party under Mr. A. B. Hunter at Mianwali on 25 负 October. Later the United Provinces traverse detachment opened at Lucknow on 19th November.

Surveyors were distributed over the area for survey in sheets $38 \frac{\Gamma}{10,11,12,13,14,15,10}$, $43 \frac{\mathrm{D}}{1,2,3,4,5, \overline{0}, 7}$. Later, for economy's sake, sheet $43 \frac{\mathrm{D}}{5}$ was dropped.

Under these arrangements all sections were able to finish about the middle of April, except three or four surveyors who completed later. Mr. French with a few good draltsmen closed earlier and proceeded to Mussooree to project and plot all fair sheets
and to get all exterior work on them (margins, headings, footnotes, etc.) cleared off wholesale, which meant a considerable saving of time.

Shahpur Traverse.-This work was reguired during the current field season for the use of this party and also No. 3 (late 12) party. Work lay in sheets $39 \frac{\mathrm{M}}{0,13, \mathrm{i}}$, $43 \frac{\mathrm{D}}{3,4,7,8}, 44 \frac{A}{1,2}$. Field work was completed by the end of November and computation by middle of December.

- United Provinces Traverse.-The programme consisted of traverse work in sheets $63 \frac{}{3,4,7,7,8,10,11,12,14,15,19}, 63_{1,2,3,5,5,7,01018}, 63_{3,4,7,7,8}$. Field work started on 19th November and was completed by 20 th April. During recess all computations were completed.

Cantonment Surveys.-Cantonment Section No. 1 was placed under the officer in charge of No. 18 party on 1st April.

Three cantonments as under were surveyed during the year under report :-
Dharmsala, detail survey completed.
Meerut, only additions and alterations undertaken.
Lucknow, detail survey and some extra traversing completed.

- Maps of 8 cantonments were sent for publication and 9 were published during the year. Six maps, viz., Barrackpore, Dum Dum, Shillong, Meerut, Lucknow and Nowshera Cavalry Cantonment (now called Risalpur), remain in office. Barrackpore and Dum Dum await certain corrections; Shillong and Risalpur are now being sent for publication, and Meerut and Lucknow will be ready by the middle of November.

Fair mapping of all sheets was completed and submitted for publication by the end of recess.

Computations of triangulation and United Provinces traverse were completed during recess.

Uuited Provinces Trarerse Detachment.

The programme consisted of traverse work in districts Lucknow, Unao, Hardoi, Sitapur,

The country was perfectly flat and open and well cultivated except near water-courses where the surface was cut up by ravines.

Traverse lines were run along graticules of plane-table sections, picking up as many trijunctions as possible and intersecting conspicuous objects, such as temples, prominent trees, ctc. In addition traverse lines were run along railways. For all stations between trijunctions iron cylinders were used.

Punjab Traverse.

In last year's annual repciti reference is made to Mr, J. def. Hunter's researches into the traverse data of the Punjab. Nothing further was done in this direction during the vear under refort as it was evident from comparison of the results obtained from the crinoline tape traversing that there were considerable errors in the old traverse even after the redistribution of errors by Mr. Hunter, and that though perhaps the traverse work would be inproved by He readjustments he had made, nothing approaching finality could be reached till some data at a distaner from the origin and the existing data could be obtained on which to close the work. C:fitain Matand, thrrefore, considered that till nome further triangulation or Yaderin triverse was dome for dhis purpose it would be waste of labour to attempt a redistribution a erras which would only have to be revised later when fresh datu were available.

RIVERAIN DETACHMENT.

By Mr. Maya Das Puri.
The detachment was separated from No. 4 party (Northern Circle) on the

Perisonnel.
Captain M. N. MacLeod, R.E., in charge up to 30th June 1910.

Mr. Maya Das Puri, Extra Assistant Superintendent, Gth grade, in charge from lat July 1910.

50 Survegors, Traversers, Draltsmen, Computers, etc.
lst July 1910, was formed into an independent detachment, and was placed under the orders of the Superintendent, Northern Circle. While under No. 4 party (Northern ${ }^{\circ}$ Circle), the work was carried under the instructions of Captain M. N. MacLeod, R.E. The following out-door work was completed during the season:-

		Taversed.					
Class of work.	Straight length of rivers.	Number of linear miles.	Number of square miles.	Number of villages.	Number of stations fixed.	Number of corners of squares laid out.	Number of squares.
Main circuits	225	637.23	663	\cdots	1,123	\cdots	
Detail traversing -	130	1,650-13	296	201	6,915	\ldots	.
Base lines	130	.	514	.	.	742	247

The total cost of traversing, laying out base lines and preparing musavis (settlement mapping sheets) during the year was Rs. 38,006-9-10 (Rs. 102-7-7 per square mile), and that of the fair drawing, tracing, etc., Rs. 7,049-0-8.

The field season lasted from 1st October 1909 to 10th June 1910, and the detachment again left for the field on 17th September 1910.

The work was commenced on the Sutlej (districts Ludhiana and Jullundur) early in October 1909, on the Beas (district Amritsar and Kapurthala State) in December 1909, and on the Ravi (districts Amritsar and Sialkot) during January 1910. The plotting and compiling section was shifted to Ludhiana on 15 th November 1909, and after completing the work there, left for Amritsar on 4th February 1910, where it remained till 9th April 1910, and finally returned to Lahore on 14th April 1910 for recess. The computing office remained at Lahore during the whole year.

Main circuits were run with 330 and 500 -foot long crinoline tapes, above the high banks, on both sides of the rivers Sutlej, Beas, Ravi and Chenab, in districts Ludhiana, Jullundur, Ferozepur, Lahore, Kapurthala State, districts Amritsar, Sialkot, Gujranwala and Gujrat, and they were connected with each other after every 7th or 8th mile and with 11 trigonometrical stations.

Base lines, facing one another, were laid out on both banks of the river -Sutlej (Ludhiana and Jullundur), Beas (Amritsar and Sialkot), on the pukha ground, away from water action about $\frac{3}{1}$ mile apart from each other, for the future demarcation and survey of riverain boundaries. Generally three corners of is square were marked on the ground so as to save the patwaris the trouble of laying out a right angle.

The ground under survey was broken, sandy and marshy.
Nearly all the computations were fiuished in the field season. The completion of traverse records, writing of village names and computations of main circuits, carried late in the season, were done during the recess.

SOUTHERN CIRCLE.

By Colonel T. F. B. Renny-Tailyour, R.E.

(Vide Index map, page 21.)
The appointment of Deputy Surveyor General was abolished on the 1st March

- Colonel T. F. B. Renny-Tailyour, R.E.

Lieutenant-Colonel J. M. Fleming, I.A., from T3th October 1909 to 28th February 1010. 1910 and that of Superintendent, Southern Circle, which was held by Colonel RennyTailyour, was created on the same date. Nos. 5 (late 1) and 6 (late 2 and 17) parties working in Bombay, the Central Provinces and Berar and the Cantonment Sections until they were absorbed on the 1st April 1910 were under the Deputy Surveyor General and the Superintendent, Southern Circle ; the latter officer took over from the Superintendent, Eastern Circle, the superintendence of Nos. 7 (late 3) and 8 (late 19) parties working in Madras, Coorg and Mysore from the 1st April 1910.

The Coorg detachment was absorbed by the late No. 3 party on the 1st November 1909, the late Nos. 2 and 17 parties were amalgamated into one party which was called No. 2 party on the 1st March 1910, Nos. 1 and 2 Cantonment Sections were absorbed in other circles on the 1st April 1910 and Nos. 1, 2, 3 and 19 parties were re-numbered Nos. 5, 6, 7 and 8 parties, respectively, on the lst June 1910.

No. 5 (late 1) party completed an area of 1,763 square miles of 1 -inch new survey and 528 square miles of $1 \frac{1}{2}$-inch new survey in the Jubbulpore, Mandla, and Bamol districts of the Central Provinces and in the Rewah State in Central India. An area of 2,278 square miles of triangulation was also completed in the Hoshangabad district of the Central Provinces and in the Bhopal State in Central India.

No. 6 (late 2 and 17) party completed an area of 3,078 square miles of 1 -inch original survey, 78 square miles of 2 -inch original survey, 262 square miles of 2 -inch re-survey and 1,564 square miles of 1 -inch revision survey in the Nagpur and Wardha districts of the Central Provinces, in the Yeotmal district of Berar, in the Indore State in Central India, in the East Khandesh district of Bombay and in the Aurangabad district of Hyderabad. An area of 5,032 square miles of triangulation was completed in the Chanda district of the Central Provinces, in the Yeotmal and Buldana districts of Berar and in the Nander and Sirpur Tandur districts of Hyderabad. 788 linear miles of forest boundary traverse were also campleted.

No. 7 (late 3) party absorbed the Coorg detachment on the 1st November 1919 and commenced work in Southern India. The party completed an area of 876 square miles of 1 -inch origtnal survey, 413 square miles of 2 -inch original survey and 875 square miles of 1 -inch revision survey in Coorg, in the South Kanara inll Malabar districts of Madras and in Mysore. An area of 1,850 square miles of triangulation was also completed in the South Kanara district of Madras.

No. 8 (late 19) party completed an area of 2,396 square miles of 1 -inch original survey, 509 spuare miles of 2 -inch original survey and 190 square miles of 1 -inch supplementary survey in the Nilgiri, Malabar and Coimbatore districts of Madras and in the Cochin State in Madras. An area of 900 square miles of triangulation way completed in the Madura nad Tinnevelly districts of Madras and in the Travancore State in Madras. 312 linear miles of traverse was also cumpleted.

No. 5 (LATE 1) PARTY.

The work done by the party during the year under report avas in con-

Major C. L. Robertson, C.M.G., R.E., in charge.

Lieutenant C. F. Nation, R.E., attached from 8th September 1910.
Messrs. F. S. Bell (to 25th February 1910), F. P. Walsh, W. Skilling, B. M. Berril, C. West, R.E. Saubolle and Munehi Lal, B.A.

28 Surveyors, 3 Soldier-Surveyors, 1 Draftsman, 3 Computers, 2 Clerks and 1 Hospital Aseistant.
tinuation of that done during the previous year and was carried out in the Jubbulpore, Mandla, Damoh and Hoshangabad districts of the Central Provinces and in the Rewah and Bhopal States in Central India.

The party took the field on the 25th October 1909 and left on the 20th April 1910 for recess quarters which were transferred from Poona to Bangalore. In order to reduce expenditure the programme was considerably curtailed soon after the commencement of the field season ; this curtailment caused considerable hardship on many of the surveyors. Sheets $64_{\frac{1,8,11,12,15,10}{}}$ were entirely surveyed, the survey of sheet $64 \frac{1}{14}$ was completed and sheets $55{ }_{\sigma, 7,8}^{11}$ were partially surveyed. In addition to a small secondary series the triangulation of sheets $55 \frac{1}{1,8}$ and $55 \frac{\mathrm{~J}}{1,3,5,7}$ and of portions of sheets $55_{\frac{2,6,-\overline{11}}{J}}$ was carried out.

In the programme for this year's work it was proposed to undertake tue detail survey of a considerable area by means of revision survey; the previous survey was, however, found to be so inferior that practically no use could be made of it, and it has been decided therefore to classify the whole outturn as new survey.

The country in which the detail survey was carried out was for the most part hilly and wooded, this being specially so to the eastward where the hills on the border between the Mandla district and the Rewah State rise to some 3,000 feet above sea level and are covered with extensive forest reserves. The triangupation lay partly over the Pachmarhi hills and plateau and partly in the valley of the Narbada river.

The mapping of sheets $64 \sqrt{4,8,11,12,14,15,16}$, was commenced, but, owing to the introduction of new methods necessitating the special training of draftsmen and to the delays which occurred in obtaining enlargements of the plane-table sections, the work was considerably retarded and all the sheets will not be completed by the end of the recess season; the unfinished sheets will be completed in the drawing section of the Southern Circle Office. The completion of 8 shects which were arrears from the previous recess season als. jnterfered with the current mapping.

The triangulation computations have not been entirely worked out, but more than sufficient have been completed for the requirements of next field season No triangulation charts have been prepared.

Ertract from report by Major C. L. Robertson, C.M.G.. R.L.
The existing maps on the 1 -inch scale of the portions of the Mandla district and Rewah Native State in question were merely rather indifferent compilations from old cadastral surveys, supplemented by extra-departmental information; the bill drawing making no pretence to re. present contours, and the publication being all in black. They were therefore not considerod of sufficient value to justify an attempt at revising them. The existing surver of the portions of the Jubbulpore district, however, falling in these sheet areas is of a bigher chass, being actual topographical work though of doubtful value as far as the contouring is concerncd and, as with the remainder of the sheet arens, published in only one colour. Over these areas it was decided to class the work as revisionary, and for this purpose tracings of the outline of the existing surve y were given to the surveyors with instructions to transfer these in blue on to their plane-tables bit by bit in advanae of their work, and to check this transfer on the ground, correcting it where neceasary before inking it up, and to re-contour the whole at 50 feet vertical intervals. ?has
re-contouring has been based on a fresh tertiary triangulation extended over the area by Mr . J. S. Bell during the previous season.

In practice the existing outline as transferred was found to be so generally out of positioni to a slight extent, sometimes in one direction and sometimes in another, that it was found to rather confuse than assist the surveyors. The so-called revisionary survey, therefore, resolved itself into new survey and, for all purposes of cost and outturn rates, should be treated as such.

The scale of $1 \frac{1}{2}$ inch $=1$ mile was selected as that of revision survey in the western areas, as some of the fair sheets of comparatively recent surveys over these had been drawn on this scale and the preparation of photographic blue pcints for the purpose of corrcction and contouring in the field was simplified by its adoption.

As in the case of the 1 -inch revisionary survey, that done here on the $1 \frac{1}{2}$-inch scale resolved itself practically into new survey for the same reasons, viz., that the existing outline was found on examination to be generally, though seldom extensively, out of position, rendering contourimg impossible without what to all intents and purposes amounted to re-survey of the outline.

I am of opinion that for anything but worls which is intended simply to supplement survey which is known to be of good quality, or of which an accurate correction is not requiced, the use of blue prints of previous survev is a mistake, as it is of little if any assistance to the careful surveyor, while it affords the dishonest one an opportunity of scamping his work.

No. 6 (LATE 2 AND 17) PARTY.

On the 1st March 1910 Nos. 2 and 17 parties were amalgamated and the work of both parties and of the combined

Captain H. L. Crosthwait, R.E. (late No. 17 party), in charge from 5th November 1909 to 3rd February 1910.

Captain H. Wood, R.E. (late No. 2 party), in charge to 13th May 1910 and from 13th June 1910 to 19th July 1910 .

Lieutenant S. W. S. Hamilton, R.F. (late No. 17 party), attached to 16 th June 1910 and in charge to 4 th November 1909, from 4th to 28th Feloruary 1910 and from 14th May 1910 to 12 th June 1910.

Lieutenant K. W. Pye, R.E., in charge from 16th Augusi 1910 to 5th September 1910.

Lieutenant J. A. Field, R.E. (late No. 2 party), attached and in charge from 20 th July 1910 to 15th August 1910 and from 6th September 1910.

Messrs. A. Fwing to 6th May 1910, C. G. Lee, Amar Singh, J. H. S. Wilson, P. R. Anderson, J. P. Newland to 30th June 1910, E. A. Mever, A. K. Mitra, F. B. Kitchen, C. O. Picard, P. C. Mitrn, F. C. Saint, E. J. Hanlby, R. B. Gilden, C. B. Sexton, A. J. Booth nnd R. M. Wyatt.

Messrs. R. V. Jushi and Dharmu.
44 Surveyors, 7 Soldier-Surveyors, 6 Pupil Sifrvevors, 4 Draftsmen, 1 'Гyper, 4 Clerks and 2 Hospital Assistants. party appears in this report.

The work was continued in the previous theatres of operations, that of the late No. 2 party in the Nagpur, Wardha and Chanda districts of the Central Provinces, in the Yeotmal district of Berar and in the Nander and Sirpur Tandur districts of Hyderabad, while that of the late No. 17 party was in the Indore State, in Central India, in the East Khandesh district of Bombay, in the Buldana district of Berar and in the Aurangabad district of Hyderabad.

Field work was commenced at the end of October 1909 and finished by the beginning of May 1910, the party arriving on the 8th May 1910 at recess quarters which were transferred from Poona to Bangalore. Owing to difficulties in recruiting khalasis some of the surveyors were delayed in commencing work. Very shortly after the commencement of the field season orders were received to reduce expenditure as much as possible ; in consequence a number of surveyors were sent on leave or discharged, the programme was considerably modified and the distribution of the party
 surveyed and small portions of shects $46{ }_{3 ; 1 \overline{2}}^{\mathrm{P}}$ and $55 \frac{1}{15,10}$ were also surveyed.
 $55_{1,2,5,0,1 ;}$ and $56 \frac{3}{1}$, while sheets $55 \frac{\pi}{4, A, 12}$ and $56 \frac{1}{1.5,0)}$ were reconnoitred, but unfortunately the officer concerned fell ill before he could undertake the triangulation. Theodolite forest boundary traverses were undertaken in sheets

The scene of operations in Berar lay in the valley of the Wardha river and in the hills lying to the west of it. Into the extreme north of the aren surveyed project the southern spurs of an outlying range of the Satpura hills; these bills rising some 500 to 600 feet from the plain are mostly covered with reserved forests and being much cut up by the drainage are intricate and difficult. The abrupt change from these hills to the level plains of the Wardha river is almost as great as the difference they present to the surveyors, the latter being as easy as the former is difficult. West of the Wardha river in the south-west corner of the area surveyed the eastern edge of the Yeotmal plateau occurs; the country here is much broken up, the features though prominent and well marked are as intricate in design as they are diminutive in size and, as in previous years, the surveyors found them hard to delineate. The country surveyed in East Khandesh and Aurangabad lay on the northern edge of the Deccan plateau and on the southern side of the Tapti valley. Although the ghat on the edge of the plateau with its sudden drop of 700 to 1,000 feet forms a natural barrier dividing the two areas, they are very similar from the point of view of a surveyor, well marked features abound, the ground is open, villages are numerous, water is plentiful and transport is easy to obtain. The small area surveyed along the boundary between Indore and East Khandesh offers the reverse picture ; heavily wooded, rugged hills in continuation of the Satpura range, little water, few communications, sparsely inhabited, and with little or no transport-all combine to make the work as difficult as possible.

Sheets $46 \frac{0}{15}, 46 \frac{\mathrm{P}}{1,4,5,7,8,9,10,11,13,14}$ and $55 \frac{\mathrm{~L}}{8,9,10,12,13,14}$ have been mapped and will be completed by the end of the recess season leaving no arrears of standard sheets. In addition 8 sheets of the 2 -inch forest editions of standard sheets have been prepared, but in future this class of work will be undertaken in the drawing section of the Southern Circle Office.

The triangulation computations have not been entirely worked out, but more than sufficient have been completed for the requirements of next field season. The traversing computations lave been completed. No triangulation charts have been completed.

Extract from a report by Captain H. Wood, R.E.

For revision survey on the 1 -inch scale the system mentioned below was adopted. It should be noted that of the sheets for revision survey on this scale, in $46 \frac{\mathrm{r}}{1,2,3,5,0,9,}$ in were numerous isolated reserved forests which had been previously surveyed on the 4 -inch scale, while in sheets $46 \frac{1}{9,13,14}$ were forests which had not been surveyed on any larger scale than the 1 -inch. These latter had to be re-surveyed on the 2 -inch scale. In order to utilize the 4 -inch scale survey of the forests mentioned above, reductions on the 1 -inch :cale of the published forest maps, printed in black on bank post paper, were obtained during recess. These were cut up, fitted and lightly pasted in their correct positions on copies of the old Rombay topegraphical survey shects which had been previously made up to graticule limits of the n w standarl she et serics, the correct d graticul. In s being ruled up in black and trigon meriral sta : ons and points plotted on them.

The corrected 1 -inch sheets with the reductions of 4 -inch work superimposed were sent to Calcutta and blue prints on Whatman drawing paper obtained

The surveyor using these blue prints revised the work in the ordinary way, but the deiail in the previously surveyed forest reserves was accepted as correct and inked upon the P. T. sections after the roads had been classified and any new ones inserted.

Where the contouring was light the 50 feet contours were inked up on the plane tables after being checked on the ground by heights taken by the surveror, who had with him as an guid, a copy of the 4 -inch published map on which the camp ollicer had inked up the 50 fect contours in red.

Where the contouring was heavy the ground had to be contoured anew, and the new contouring was compared by the camp officer with that shown on the 4 -inch map and any differences checked on the spot. This method of preparing the blue prints for surveyors would have been most satisfactory, but unfortunately the blue prints supplied were not always exactly correct to the dimensions given and in some cases were considerably distorted.

This gave a certain amount of difficulty with the detail survey and next season a different method will be tried.

Experiments were also carried out with Bristol board and Southampton board in lieu of Whatman's paper to see if distortions of the sections could be overcome. The Southampton. board was a complete failure, but the Bristol toard promised well and it is hoped that the difficulties will be overcome by its use.

The following method of transferring from the traces to the fair map was used during recess and found very successful. After all the traces had been prepared in the usual way they were carefully cut along the graticule lines and mounted on the plotted prick-off sheet in their relative places, being stuck down in five or six places with a minute drop of perfectly clear gum. The sheet was then vandyked and a blue print taken on $210-\mathrm{lb}$. drawing paper. The traces were then removed from the prick-off sheet and remounted on tracing paper (leaving room for marfinal remarks, etc.), and the hill traces were then similarly mounted on the prick-off sheet and a blue vandyked print of them obtained in the same way. These blue prints were used as the fair sheets, being inked up in the ordinary way. This process of transferring the detail not only saved a great deal of time (the more complicated the work the more time is saved), but also, as it was done mechanically, the transferring was more accurate.

A possible method of obtaining blue prints of both outline and contours on one sheet would be to make vandybe plates of the outline and hill traces separately and to combine the two in the printing
\checkmark
Note by Mr. A. Ewing.
The second method of having two !lates, one for the outline and the other for the contours, and getting a combined print is a waste of time as it entails bad registration and is a roundabout way of getting the outline and contours on one sheet.

A simpler and quicker method will be to draw both outline and contours on each 5 -minute trace, only the 250 feet contours being shown when the contouring is close.

No. 7 (LATE 3) PARTY.

This year the party for the first time worked in Southern India: The work was in continuation of that done the

> Ceptain C. P. Gunter, R.E., in charge to 16th June 1910.
> Lieutenant S. W. S. Hamilton, R.E., in charge from 17th Jano 1010 to 20th July 1910.
> Lieutenant A. H. Gwyn, I.A., attached and in charge Irom 21st July 1910 to 30th September 1010.
> a
> W. M. German, J. O'B. Donaghey, W. E. S. Sxineg, H. D. W. Stotesbury, and J. C. St. C. Pollett.
> Mcsors. Eknath Battu and Abdul Hakk.
> 25 Surveyore, 1 Draltaman and 2 Clorks.
previous year by the Coorg detachment which was absorbed in the party, the sphere of operations lying in Coorg, in the adjoining South Kanara and Malabar districts of Madras and in Mysore.

Field wo:k was commenced on the 20th November 1909 and finished on the 4th June 1910. The programme was cut down at the beginning of the field season owing to financial reasons. Only seven sheets, $48 \frac{\overline{10}, 42,13,17.16}{\mathrm{P}}$ and $57 \frac{\mathrm{D}}{5,6}$, were completely surveyed, the work of the Coorg detachment in shect $48{ }_{11}^{p}$ was completed and very small scattered areas amount-

 48 ni. $九, 4,48$,

The country varied exceedingly in character extending from the low Malabar coast land, over the Western Ghats ard the hills of Coorg, into the great plateau of Mysore. On the whole it is not easy to work in ; except in the open country of Mysore traversing was the usual method of survey. The cost-rates of the detail survey are misleading, they were influenced largely by the abandonment, after commencement, of the survey of the four sheets $48 \frac{\mathrm{P}}{3,4,7,8}$, a number of surveyors having to le sent away and a large number (proportionally) of senior officers being left ; the enhanced rates of travelling allowance and contingent expenditure have also increased the figures.

The country under survey in Coorg is of an extremely picturesque character consisting of wooded hills, some of which are covered with coffee estates, and which are interspersed with long paddy fields. The inhabitants live in substantial houses around the edges of these fields and there are no large towns. The old Coorg fortifications, locally known as kadangas, are an interesting feature, some of them dating from the ninth century A.D. ; sometimes several miles long, they run along hill tops in the most advantageous positions for defence, occasionally ramifying and throwing out smaller branches. They consist simply of a high parapet and a deep ditch, the combined height and depth of which is sometimes 35 feet.

Sheets $48 \frac{\mathrm{P}}{10,12,13,14,1 \mathrm{le}}$ and $57 \frac{\mathrm{D}}{3,5}$ have been mapped and will be completed soon after the end of the recess season. Owing to inaccuracies having been discovered in sheets $48 \frac{\mathrm{P}}{11,1^{5}}$ which were surveycd by the Coorg detachment, the completion of their mapping has been delayed.

The computations of the triangulation have been completed. Triangulation charts $84 \mathrm{I}, 84 \mathrm{~K}, 94 \mathrm{~A}$ and 94 B , which are arrears from the work of the party in Burma, are nearly completed.

Extract from a report by Lieutenant A. H. Guyn, I.A.
Use of Land Record waps in Coorg.-These mapa are made by joining up village maps, so distortion is one of their faults; neverthelcss when reduced to the 1 -inch scale on tracing paper and transferred to the plane-table in blue pencil they were useful for surveying the edges of cultivation, which in Coorg are an unfailing guide for contouring.

No. 8 (LATE 19) PARTY.

The work carried on by the party was of the same nature as, and in coutinuation of, that of the previous year and

Captain C. M. Browne, D.S.O., R.E., in charge frem 22nd November 1909 to 2nd April 1910.
Lieutenant S. W. S. Hamilton, R.E., in charge from 21st July 1910.
Lieutenant C. G. Lewis, R.F., attached and in charge to 21st November 1009 and from 3rd A pril 1910 to 20th July 1910.
Messre. J. Smith to 10th April 1010, W. F. E. Adams, E. J. Biggic, S. F. Norman from 13th Junc 1910. M. Mahadeva Dudaliar, Balaji Dlondiba, M. S. Ganesa Aigar and A. J. Fraser.
Mr. Adantarao Dhondiba.
20 Surveyors, 2 Traversers aud 2 Clerks. covered parts of the Nilgiri, Coimbatore, Malabar, Madura and Tinnevelly districts of Madras and of the Travancore and Cochin States in Madras.

The party took the field on the 23rd November 1909 and returned to recess quarters on the 4th June 1910.
 surveyed, the survey of sheets $58 \frac{A}{11.12,15,10}$ were completed and sheet $58 \frac{{ }_{3}^{3}}{-}$ was partially surveyed. Triangulation was carried out and the old triangulation examined
 the backwaters near the coast.

The Nilgiris and the hilly portions of Malabar, Coimbatore and Cochin present the usual features of hill country met with in the Western Ghats, comparatively open jungle at the base of the hills, giving way as the ground rises to deuse moist evergreen forest with thick undergrowth and few communications,
and finally reaching the upper plateaux about 6,000 feet in elevation; these platteaux consist.of large undulating open downs interspersed with clear streams of running water where plane-tabling is simple. The plains of Coimbatore consist of large open stretches of cultivated land where planc-tabling is extremely easy and progress rapid. Moving westwards from Coimbatore through the " Palghat Gap" we come to the plains of the west coast; the aspect of the land changes rapidly, the dry cultivation of Coimbatore gives place to paddy fields surrounded by dense groves of cocoanut and palmyra palms, the inhabitants are no longer grouped together in villages but are scattered over the whole country, an endless succession of mud and thatch. Progress in this country must always be slow, triangulation points are few and far between, in situ fixings are very rarely obtained and plane-table traversing is the only method remaining.
 hand, but owing to the late return of the party to recess quarters and to the introduction of new methods necessitating the special training of draftsmen, all the sheets will not be completed by the end of the recess season and the mapping of the unfinished sheets will be continued during next field season.

- The computations of the triangulation ald traversing have practically been completcd. Triangulation charts $49 \mathrm{M}, 49 \mathrm{~N}$ aid 58 A have nearly been completcd.

On the whole, considering the notoriously malarious tracts in which part of the work was carricd out during the field season, the health of the party was gocd throughout the year. Two khalasis did.

Extract from a report by Lieutenant S. W. S. Hamilton, R.E.

. The country adjoining the coast is extremely intricate and requires not only a first class surveyor, but also a man who is a first class draftsman to sarvey it properly on the scale of 1 inch to 1 mile.

In future it is intended to survey the coastal areas on the scale of $1 \frac{1}{2}$ inches to 1 mile. This scale will be sufficiently large to enable the more indifferent draftsmen to show a sufficiency of detail and at the same time a largely increased outturn will be obtained

The very large amount of detail and the extraordinary intricacies of the cultivation limits that the sheets of the party, especially those on the coast, contain, render fair mapping very slow, the dotting of the cultivation limits in one sheet alone having taken $2 \frac{1}{2}$ months to complete, while this work has not taken less than a month or six weeks in any sheet that borders on the coast, to say nothing of the innumerable habitations scattered over the country in every direction. Ornamentation is close and contouring often intricate, while the contouring of sheets other than those on the coast, ranging as it does from 400 to 8,000 feet is extremely heavy.

EASTERN CIRCLE.

By Colonel G. B. Hodgson, I.A. (Vide Index Map, page 21).

The superintendence of the parties working in Southern India, Burma and Assam, Nos. 3, 10, 11, 19, 20 and the Burma Drawing Office was held by Lieuten-ant-Colonel P. J. Gordon, I.A., up to the 31st of March 1910. On the completion of the reorganisation of the department on the 1st April 1910, Colonel G. B. Hodgson, I.A., then on leave, was appointed Superintendent in charge of the newly formed Eastern circle which at present comprises only 3 parties, Nos. 10, 11 and 12 (old 20) and a nucleus drawing office. Lieutenant-Colonel Gordon was appointed to officiate for him, and continued to hold charge until the close of the year. Nos. 3 and 19 parties and the drawing office were at the same tune
transferred to the Southern circle and No. 9 party will be transferred from the Northern to the Eastern circle at the close of the ensuing season.

As no offices were available at the time at Shillong, which is to be the headquarters of the Eastern circle, it was decided that the Superintendent's office should remain at Bangalore until the end of the year. The offices of the Director of Land Records and Agriculture and Inspector General of Police, Eastern Bengal and Arsam, at Shillong are, however, expecterl to be available in March 1910, and the office of the Superintendent, Eastern circle, will then move to Shillong and will be located in these offices temporarily until the office of the Accountant General, which the Local Government has offered to place at our disposal, becomes available in the following October.

Burma.-Nos. 10 and 11 parties continued operations in the Katha, Bhamo, and Myitkyina districts of Upper Burma ard the Shan States, completing between them 7,515 square miles of topography on the 1 -inch scale in sheets 92 H and 93 E , I, J, N aid O. No. 10 party triangulated and traversed 4,415 square miles in sheets 92 D and H and No. 11 party 3,050 square miles in Karenni and the Southern Shan States in sheet 94 E. No. 10 party will in future be employcd in the north of the province ard No. 11 party after completing the survey of Karenni will probably be transferrcd to Tavoy and Mergui, of which districts the Local Government have expresscd a wish for topographical maps.

Eastern Bengal and Assam.-No. 12 party continucd work in the Sylhet and Cachar districts of Assam ar d the Khasi and Jaintia Hills; an area of 2,550 square miles in sheet 780 was triangulatcd ard traversed and 1,802 square miles were surveytd in detail in sheet 83 D of which 421 square miles consisted of reserved forests ard were surveytd on the 2 -inch scale.

Cantonment Surveys.

No. 2 Cantonment Section, which was formerly organized as an independent detachment, was attached to ard became an integral part of No. 10 party from the 1st of April 1910. The survey of the Securderabad cantonment was completed and also that of the Mandalay, Bhamo, Maymyo and Meiktila cantonments in Burma. The survey of the cantonments was carried out on the 16 -inch and of the bazars on the 64 -inch scale. The survey of the Rangoon cantonment will be carricd out during 1910-11, and the survey of the cantonments of India and Burma will then be completed.

Six probationers of the Burma Land Records Department after a year's course of instruction at Dehra Dun were attached to No. 10 party and received a practical training in cadastral survey in the field. During the course, which lasted for twelve months, 6,629 acres in the Bhamo and Yamethin districts were surveyed on the 16 -inch scale and 221 acres of Yamethin town were surveyed on the 64inch scale. It is proposed to attach five officers of the Burma Land Records Department to this party for a similar training during 1910-11.

No. 10 PARTY.
Upper Burma and Shan States.-The party commenced field work in the

Captain L. G. Crosthwait, I.A.
Messrs. ©. D. Smart, F. S. Bell, C. S. Littlewood, W. G. Jarbo, E. Claudius, Asmatulah Klana, S. M. Kenny, Abdul Rahim, K.S., W. H. Strong.

Mr. Lachman Jadu, R.S.
32 Survoyors, 3 Traversers, and 2 SoldierSurvejors under tinining.
middle of November 1909 and returned to recess quarters at Maymyo at the end of May 1910. It was divided into 3 sections : (1) Topographical, (2) Cantonment, (3) Land Records training section. The topographical section was again divided into 4 camps under Messrs. Jarbo Asmat IJab Kban,
-Kenny and Lachman Jadu. The whole of the season's work lay at a high altitude, partly in the Shan States and partly in the Bhamo and Myitkyina districts, and owing to the invigorating climate the health of the party throughout the season was excellent, although the cold at night was often very great and the field season was unduly prolonged in order that the programme might be completed. There was no difficulty in obtaining labour and ready assistance was at all times given by the local authorities. The country operated in consistcd chiefly of high sparsely -wooded hills and grassy uplands inhabited by Kachins, Chinese and various tribes of Shans, and varied in altitude from 532 feet on the Shweli river to 8,371 feet in the Kokang district of the Hsenwi State to the east of the Salween river, and included 150 miles of the Burma-China boundary. The country outside the boundary was sketched as far as possible during the progress of the survey of the boundary, and the area thus mapped amounts to 592 square miles, which is not included in the outturn given in the tabular statement at page 18. Mr. Aldul Rabim was deputed to attend a meeting of British and Chinese officials to assist in defining the alignnent of portion of the boundary.
r The triangulation was carried out by Messrs. Claudius, Strong and Abdul Rahim and was connected with the new G. T. Upper Irrawaddy series which is now in course of observation and consequently only preliminary values of the data were available. All the computations of the triangulation and traversing were completed and the drawing of 4 charts of sheets $84 \mathrm{M}, 92 \mathrm{~L}, 93 \mathrm{~A}$ and 93 E was also completed.

The fair maps were drawn on the $1 \frac{1}{2}$-inch scale for publication on the 1 -inch in 18 sheets, of which 15 will be submitted for publication before the party takes the field again and the remaining 3 sheets will be completed in the circle drawing office.

Cantonment Section.

The party hitherto known as No. 2 Cantonment Section was merged in this party from the lst April 1910. During the season under report the survey of the (antonments of Bhamo, Mandalay, Maymyo and Meiktila was completed ard that of Rangoon commenced. They were all surveyed on the 16 -inch scale with contours at 5 feet vertical intervals. The bazars were surveyed on the 64 -inch scale ard were not contoured. They were connected with trigonometrically fixed stations which were in all cases adopted as the stations of origin. Vertical angles were observed at all stations of the traversing and the contouring was based on the heights obtained therefrom. The traverse stations were marked with rough stones or bricks.

- The average daily outturn per surveyor was 11 stations and 74 chains of traversing ; $15 \cdot 25$ acres of 16 -inch detail sur iey and 1.91 acres on the 64 -inch scale. This does not include contouring, ${ }^{\text {ff }}$ which the average daily outturn was 2258 acres.
.The only fair maps drawn this season were those of the bazars of Secunderabad and Bolaram which were surveyed the previous season on the scale of $105 \cdot 6$-inches to the mile ; 122 sheets were drawn and 81 submitted for publication.

The maps of the cantonments of Jubbulpore, Pachmarhi and Cannanore which were all surveyed by this section in former seasons were published, and also those of 25 out of the 49 bazars of Secunderabad.

Training Section.

Mr. Littleword was placed in charge of this section which was formed for the purpose of giving a practical training in cadastral survey in the field to probationirs of the Burna Lard Records Department who had already gone through a pre-
liminary courne of instruction at Dehra Dun. The course lasted 12 months during which the pupils carried out some traversing, 16 -inch cadastral survey and 64 -inch town survey and the computations, mapping and area calculations connected therewith.

No. 11 PARTY.

Shan States.-The party commenced field work in the middle of November

Captain R. H. Phillimore, R.E., in charge up to lGith May 1910.
Captain E. C. Baker, R.E., in charge (rom 17tb May 1010.
Messre. Jagdnmba Prasad, C. S. Littlewood, S. S. M. Fielding, V. W. Morton, T. P. Dewar, A. A. Graham, J. G. D. Vander-Beek and H. St. ग. Kenny.
Mc. Hayat Muhammad.

19 Surveyors and 2 Soldier-Survegors and 2 pupils under training.

1909 and returncd to recess quarters in. Maymyo in the middle of May 1910. It was divided into 3 camps under Lieutenant. Baker and Messrs. Fielding ard Dewar. Owing to the long distance to be traversed by road before the party reached its field of operations, field work was in progress for only $4 \frac{1}{2}$ months.

The programme of detail survey was completed. It was carried out on the 1 -inch scale with contours at 100 feet vertical intervals except in a few places where the ground admittcd of an interval of 50 feet. In the fair maps, however, contours are drawn with an interval of 50 feet, the intervening contours being inter? polated at that stage.

The country surveycd in detail compriscd part of the Shan States up to the frontier of China and the limits of the Wia States inclided in sheets
 is not contemplated at present ard the limits up to which the survey was to be carried out were defined by the Local Government. The country consisted for the most part of bold rolling hills generally well wocded but not dense. Military police escorts were provided for the officer in charge of the party and those in charge of camps, but the inhabitants were friendly ard hospitable and little difficulty was experienced in obtaining supplies except in Karenni and in the Manglum States where there was scarcity. The health of the party was gocd.

One surveyor was employed on special work in sheet 94 M in connection with the boundary between the Shan States ard Siam. His cutturn has not been included in this report as it was not superviscd in any way, ard falls into the area to be surveycd next season when it will le exeminced a:i lieperted on.

The area surveyed was mapped on the 11 -inch scalc in 17 sheets of which 12 will be submittcd for publication before the party leaves recess quarters and the remainder will be complete 1 in the circle draning oflice.

The triangulation computations were completcel and 8 charts, $93 \mathrm{~L}, \mathrm{~N}, \mathrm{O}, \mathrm{P}$, 94 M and $102 \mathrm{C}, \mathrm{D}, \mathrm{G}$, with their correspording general report volumes, wert completed. Material is available for two more charts, 93 J and 94 I , and thes will be taken up next season.

No. 12 (LATE 20) PARTY.

- Eastern Bengal and Assam.-Field work commenced early in November 1909

Major A. Menrs, I.A., in charge.
Lieutenant G. F. T. Oabes, R. E.
Messrs. C. C. Byrne, Pramadaranjan Ray, J. H. Williaus, Amjad Ali, L. Willians, aud J. O'C. Fitzpatrick.

31 Surveyors, 3 Traversers and 2 Soldier-Surveyors under traiming, 2 Draltsmen and 2 Computers.

The snall outturn of 1 ard 2 -inch original survey was partly due to the intricate nature of the ground and thick forest growth. Large areas of unsurvesed
waste land affected the outturn of supplementary survey and an abnormal amount of sickness amongst the native establishment retarded the progress of every class of survey. The cost-rates are consequently very high this season, excepting that of the triangulation which is considerably less than that of last season when the rate was high owing to the small area triangulated.

The triangulation this season lay in the Khasi and Jaintia hills and was .based on the G. T. eastern frontier meridional series as revised in 1897-98 after the great earthquake of the former year, and on the Khasi hills secondary series of No. 15 party, observed during the season under report and previous season. The work was carried out under great difficulties. Coolies for transport purposes were obtained with much difficulty. During the latter part of November and early December a good deal of rain fell and from the middle of January to nearly the end of March dense haze was experienced. Lieutenant Oakes reports that at times it was not possible to distinguish signals at a distance of even 3 miles and consequently he was obliged to place his stations closer together than would have been necessary otherwise. From March till the latter part of May it rained incessantly, with terrific wind storms. The observers' thecdolites were searly blown over on more than one occasion and all their tents were damaged beyond repair. Under these conditions it is not surprising that the programme of triangulation was not completed. A small portion of the area had been triangulated in 1903-04 when a 4 -inch survey of reserved forest was carried out and the Khasi hills secondary series mentioned above runs right across the sheet. Triangulation was also carried out in this sheet in 1863-65 and some of the stations were found and connected with the present work, and it is anticipated that it will be possible to utilize this oid work to a certain extent.

The traversing was mainly confined to the flat country to the south of the Khasi and Jaintia hills and amounted to 270 linear miles. The theodolite stations were marked with wooden pegs, but in the open country at intervals of about a mile, 3 consecutive stations were marked with zinc cylinders over which mounds of earth were thrown.

With the exception of one sheet, the programme of detail survey was completed. Sheets $83_{\overline{2,3,5,6, ~}, \frac{\mathrm{E}, 0,13}{}}$ were surveyed on the 1 -inch scale and $83_{10, \overline{11}, \overline{14,16}}{ }^{\mathrm{D}}$ on the 2 -inch. These latter were partly surveyed last season and consisted mainly of reserved forests. Black reductions on bank-post paper of the areas for supplementary and revision survey were prepared on the 1 -inch scale and the detail was trans'erred square by square to mounted an l projected plane-tables. This method was considered more satisfactory than working direct on blue prints which are generally found to be slightly distorted. The area revised during this season was originally surveyed on the 2 -inch scale in 1881-83 and little fault could be found with the accuracy of the old survey except for the contouring which had to be done de novo, and again this seas in the cadastral maps which came under supple nentary survey were found to be excellent but were much interspersed with unsurveyed waste land.

The area under detail survey was of an extremely varied nature, embracing the open cultivated plains and tea garden lands of districts Sylhet and Cachar and the hilly forest-clad portions of these districts adjoining the Lushai Hills and Hill Tippera State. The plains of Sylhet and Cachar are for the most part open, cultivated and densely populated and it was found by no means easy to map the congested village sites on the 1 -inch scale. In Hill Tippera and the Lushai Hills and the adjoining areas of districts Sy het and Cachar the country was hilly and

covered with the densest cane, bamboo and evergreen jungle ard was very difficult to survey.

The entire area surveyed is being mapped on the $1 \frac{1}{1}$-inch scale for publication on the 1 -inch. Owing to the ill-health of the establishment during the recess also, the progress of the mapping was not so good as could have been desired. Five sheets will be submitted for publication before the close of the recess season, and 6 sheets will be completed in the circle drawing office.

TOPOGRAPHICAL SURVEY.

Table sh wing outturns of detail survey on varicus scales.

Scale.	Clase of survey.	Circle	Party.	Locality.	Class of oountry.	Outtunar.		$\begin{gathered} \text { Average } \\ \text { number } \\ \text { of firing } \\ \text { per } \\ \text { square } \\ \text { mile. } \end{gathered}$
						Total square miles	Average per man per month. Square miles.	
1-inch .	Survey	N.	No. 3	Punjab . .	Flat, open and intersected with canals.	3,235	32.9	14
		N.	No. 4	Do. . .	Flat, open, pertly desert.	1,782	46.5	14
		S.	No. 5	Central Provinces	Hilly and wooded .	1,763	18.0	12
		S.	No. 6	Bombay and Berar	Open, oultivated .	3,078	23.0	16
		S.	No. 7	Mysore, Coorg and Malabar.	$\begin{aligned} & \text { Varied, mostly } \\ & \text { wooded. } \end{aligned}$	876	26.0	16
-		S.	No. 8	Madras (Nilgiris) and Travancore.	Varied . . .	2,396	18.0	18
		E.	No. 10	$\begin{aligned} & \text { Northern Shan } \\ & \text { States. } \end{aligned}$	Bold, lightly wooded hills.	3,305	33.2	6
		E.	No. 11	Do. do.	Bold, lightly wooded hills.	3,907	$34 \cdot 2$	0
		E.	No. 12	Assam, Lushai Hills.	Partly cultivated, partly forest.	1,060	17.7	23
1-insh ${ }^{\text {L }}$	Re survey.	N.	No. 1	Punjab and Kashmir.	Varied, mostly flat and open.	5,100	$31 \cdot 8$	7
		8.	No. 6	Bombay .	Open, oultivated .	1,664	30.0	7
		8.	No. 7	Mysore . .	Open, ondulating .	875	67.0	5
1-inoh .		E.	No. 10	Northern Shan States.	Bold, lightly wooded hills.	211	43.6	4
		E.	No. 12	Lashai Hills	Varied . . .	322	25-4	23
	Supplementary Survey.	S.	No. 8	Madras . .	Low-lying coset land.	190	30.0	8
		E.	No. 12	Sylhet and Cachar	Varied . . .	420	20.0	23
1 1-inch	Survey •	S.	No. 5	Central Provinces	Hilly end wooded .	528	16.0	15
2 -inch .	Do.	N.	No. 4	Punjab . .	Hilly and broken .	1,552	17.0	28
		S.	No. 6	$\begin{aligned} & \text { Bombay } \\ & \text { Berar. } \end{aligned} \quad \text { a d }$	Hilly, dense forest .	78	5.0	50
-		S.	No. 7	Mysore, Coorg and Malabar.	Do. do. .	413	8.0	56
		S.	$\text { No. } 8$	Madras (Nilgirie)	Hilly forest dense and opon.	509	70	62
-		E,	No. 12	Lushai Hills	Dense forest . .	421	0.0	60
2 -inob .	Re-burvey.	8	No. 6	Berar .	Forest . . .	262	11.0	28

Note.-In ordor to reduce expenditura the programmee and establighmente of parties were cut down soon after the commencement of the field sengon. Thig has advereely affected the outtarns.
TOPOGRAPHICAL SURVEY.
Table showing cutturns of triangulation, traversing and levelling.

II.-Triangulation.

By Major H. H. Turner, R.E.

No. 15 (late 24) Party.
(Vide Index maps, page 39.)
The work of the party during the past year included principal, secordary and tertiary triangulations.

Personnel.

Captnin C. M. Browne, D.S.O., R.E., in charge from 1st October to 8th November 1900.

Major H. H. Turner, R.E., in charge from 9th November 1909 to 30th Scptember 1910.

Imperial Officers.
Mr. J. defircaff Hunter, M. A.
Lieutennat E. B. Cardew, R.E.
Lieutenant F. J. M. King, R.E. (joined the party on lat Mnrch 1910).

Lieutenant H. G. Bel!, R. E. (joined the party on 23rd March 1910).

Lieutenant K. Mason, R.E. (joined the party on 15th March 1910).

Provincial Officers.
Mr. H. B. Simons (joined the party on 15th treh 1910).
Mr. C. H. Tresham.
Mr. Abdul Hai.
Mr. V. D. B. Collins.
Mr. F. W. Smith.
Mr. G. A. Norman.
Mr. B. T. Wyatt.
Mr. Abdul Karim.
Mr. K.S. Gopalachari.
Mr. Mohan Lall Arora (left the Departineut on 15th September 1910).

New Provincial Service.
Mr. V. P. Wainright.
Mr. C. S. McInnes.

Principal Trtangulation.

Work was carried out during the year on three separate series.

1. The North Baluchistan Series emanating from the sides Zawa-Zibra of the Kalat Longitudinal Series was extended by Mr, Tresham through the whole length of Northern Baluchistan and closed on the side Tounsa-Langawala of the Great Ir dus Series.
2. The Kashmir Series emanating from the side Nerh-Khagriana of the North-West Himalaya Series was continucd by Mr. J. deGraaff Hunter to latitude $34^{\circ} 50^{\prime}$.
3. The Upper Irrawaddy Series is a new series startcd by Lieutenant Cardew from the side Tangte-Lakar Bum of the Great Salween Series.

The North Baluch stan Series.
Mr. Tresham left Mussoorie on the 19th August 1909 for Chaman where he assembled his field party. Having arranged for the posting of his lamp-squads he himself marched for Narishela arriving there on the 4th September 1909.

In 1908 Lieutenant Oakes carried the series from its base in a northerly direction up to latitude $30^{\circ} 30^{\prime}$ and observed the forward angles of the pentagon which is the north-west corner figure of the series: Mr. Tresham completed this figure and by the erd of December 1909 had extended the series in an easterly direction by means of a tetragon and quadrilateral to meridian $68^{\circ} 30^{\prime}$. As there was some difficulty about escorts and the weather was unpropitious for the continuation of the work in the higher hills, Mr. Tresham changed his base of operations to the extreme east of the series, and commenced to work westward froin the side TounsaLangawala of the Great Ind̦us Series, on which it had been decided to close the series. By the end of April he had observed the four quadrilaterals required to close on his western work and thereby completcd the series.

In addition to his triangulation work, he observed 3 astronomical azimuths at Gandak, Saleghar and Tounsa.

The instrument used throughout the observations was No. II $12^{\prime \prime}$ micrometer thendolite.

The detachment arrived at Khanai on the 9tl May 1910 where the field establishment was broken up and Mr. Tresham returncd to Mussoor.e for recess, arriving there on the 19th May.

The completion of this series closes the circuit which, starting from the baso Gandpabar-Kharko of the Great Irdus Series, includes 130 miles of the Kalat

KOLAHOI NORTH PEAK (Gwashbrari.)
Height 17,830 feet, $\lambda .34^{\circ} .9^{\prime} .55^{\prime \prime}$, L. $75^{\circ} .19^{\circ} .42^{\prime \prime}$.
From a negative taken by Lieut. K. Mason, R.E., on 29th June 1910.

Longitudinal Series, the whole length 340 miles of the North Baluchistan Series and 340 miles of the Great Indus Series.

The closing errors on the side Tounsa-Langawala are as follows :-

Side Tounsa-Langawala		Value from Great Indus Series.			Value from North Baluchistan Series.				Error.
		$62,321 \cdot 8 \mathrm{ft}$.			$62,323.0 \mathrm{ft}$.				$1 \cdot 2 \mathrm{ft}$.
Latitude of Tounsa	.	30°	41' $51{ }^{\prime \prime}$		30°	41'	51"		0".04
Latitude of Langawala	-	30°	$51^{\prime} 26^{\prime \prime}$			51'	26"		0".05
Longitude of Tounsa	-	70°	41' $27^{\prime \prime}$				27"		0"'24
Longitude of Langawala .	-		$45^{\prime} 45^{\prime \prime}$				45"		$0^{\prime \prime} \cdot 25$
Azimuth at Tounsa Langawala.	of		07' $42^{\prime \prime}$						3"02
Height of Tounsa	-	503 ft .			580.5 ft .				$12 \cdot 5 \mathrm{tt}$.
Height of Langawala	.	500 ft .			484 ft .				16 ft

The large error in height is probably due to the long rays employed on the Kalat and North Baluchistan Series.

The probable error by the formula $E=\frac{2}{3} \sqrt{\frac{\epsilon \Delta^{2}}{3 N}}$ gives $E=0^{\prime \prime} \cdot 15$ for the North Baluchistan Series, an accuracy exceeding that of the Kalat Longitudinal Series.

The country through which the series passes was in a somewhat unsettled condition, necessitating large military escorts on many of the hills. In order to obviate the necessity of asking the military authorities to provide these escorts for a second season, it was determined to attempt the completion of the series this year.

In order that this might be accomplished Mr. Tresham had to remain in the field for a period of nine months. Eight months of this was spent in continuous observation work ; this in principal work entails a very severe strain on an observerIn spite of this Mr. Tresham's work throughout the season is of the highest quality, as is attested by the results given in the table below.

The following statement gives a summary of the season's work:-

Number of principal stations observed	- .	.		17
" ," newly fixed	- .			15
" ", ", built.	- ${ }^{-}$			5
Length of triangulation completed in miles	- .			261
Area of triangulation in miles				6,580
Average triangular error of 24 triangles	-			0.303
Values of astronomical geodetic azimuths at	Gandak			$+0.06$
" ${ }^{\prime}$	Saleghar			+1.08
"	Tounsa .			+1105

The health of the detachment throughout the season's work was good.

Kashmir Principal Series.

In last year's annual report mention was made of the commencement of this
series, but no detail of the year's work was given. It is proposed to include in this report a description of the work from April 1909 to September 1910.

Season 1909.-The detachment assembled at Rawalpindi under Lieutenant Cardew at the end of April 1909, Mr. Hunter joining a few days later.

The base originally chosen was the side Nerh-Khagriana of the North-West Himalaya Series. The decision to commence the series having been arrived at somerrhat suddenly no advance reconnaissance had been made. After observations had been commenced it was found impossible to build up any other figure than a single triangle on the base selected. This being an unsatisfactory method of starting a new series, it was decided to form a pentagon by including two more stations of the North-West Himalaya Series, Nerh becoming the central station of the pentagon. As the builders and lampmen had already gone on in adrance this connection had to be left over till season 1910.

After assisting in the observations at the first station, Lieutenant Cardew handed over charge of the detachment to Mr. Hunier.

Observations were taken by Mr. Hunter in May ard June at Nerl-Khagriana and Mianjani, but on reaching his fourth station Kafir-Khan on July 5th the monsoon had already set in ard the detachment marched to recess quarters at Gandabal.

The advance parties under Messrs. Wainright and McInnes after rebuilding the stations on Kaj Nag, Ismail di Dori, Marinag and Manganwar were likewise obliged by inclement weather to retire to recess quarters.

Mr. Wyatt, to whom had been allotted the work of repairing the stations of Montgomerie's Old Series, was able to carry on his work continuously throughout the rainy season. He rebuilt in all eight stations, returning to India early in September.

A start to resume work was made from Gandabal on the 27th August; owing however to continuous heavy rain the station of Gharital was not reached till the 15 th September. It was then found that it was not suitable and a new station had to be selected and built on Kakwa ka Pahar. Observations were taken at this station and at Kafir Khan. Ismail di Dori was reached on the 24th October, but the weather conditions had then become so bad that work had to be closed.

In the meantime advance stations had been built at Chotiwala and Gunga (this latter has since been rejected) and Mr. McInnes crossed over the Barai Pass, but before he could select a station on the far side bad weather set in and he was forced to return.

The detachment returned to Dehra Dun on the 18th November 1909.
The instrument used by Mr. Hunter was No. IV $12^{\prime \prime}$ micrometer theodolite.
The health of the detachment throughout the season was good.
Season 1910.-The detachment assembled at Rawalpindi in the middle of March 1910.

The work of completing the observation for the initial pentagon of the series was first undertaken. For this purpose the stations of Nerh, Kandi and Gangachoti had to be visited.

At the forward hills beyond Gangachoti great difficulty was experienced by the lamp-squads in reaching the stations. The altitudes were from 12,000 to 16,000 feet and the snow at this early period of the year was a serious obstacle.'

Observations were finally concluded at Gangachoti on the 20th May.
The station of Kakwa ka Pahar and Chotiwala were then visited but only back angles could be observed from the latter before the end of June, when severe thunder storms announced the approach of the monsoon and preparations were
made to retire into recess quarters at Nagmarg. This place was selected as being free from cholera, an epidemic of which had just broken out in Kashmir.

The following new stations had been built up to the end of August: Zinghi Chish, 14,000 feet; Yasho Chish, 16,218 feet; Liowi, 17,430 feet; Chamuri, 15,340 feet; Choki, 13,400 feet. The last is situated just north of Gilgit and will probably be the most northerly station of the series, and for the present of the Indian. Survey.

If Mr. Hunter's programme for September can be carried out by the end of this season three figures of the series will have been completed giving a total length of triangulation of 90 miles and covering an area of 1,600 square miles.

An astronomical azimuth was observed at Gangachoti.
Throughout the season's work Mr. Hunter has used the new No. V $12^{\prime \prime}$ micrometer theodolite.

The horizontal limb of this instrument is read by three micrometer microscopes as against two of the other instruments of this type possessed by the Survey of India. The results obtained by the instrument are good, but the great advantage obtained is that less observation work is entailed, since a change of face is also a change of zero. The actual accuracy of the new instrument as compared with the old ones cannot well be given as the conditions of the work in Kashmir differ largely from those ordinarily obtaining. The observations are taken to and from hills covered with snow and the strain on the observer at heights of 14,000 and 16,000 feet is far greater than on hills less than 10,000 feet.

Owing to the difficulty of transporting the $12^{\prime \prime}$ theodolite to the tops of some of the higher hills the 8 " micrometer theodolite may have to be used on some of the highest stations selected.

In addition to his triangulation work Mr. Hunter carried out a series of comparisons to see the relative height measuring values of the following instruments :-

Mercury barometers.
Aneroid barometers.
Hypsometers.
The results proved that the aneroid barometers differed greatly from one another and from the mercury barometers. The mercury barometers so long as both were intact gave sensibly the same readings, but the deduced heights were too small. The hypsometers invariably gave a height considerably in excess of that obtained by triangulation. At 16,000 feet the excess was as much as 600 feet.

Further details of the comparisons are given in the following table.
Table of meteorological observations.

N.B.-1. Heights marked thus * are deduced from simultaneous obscrvations taken at Baramulla.
2. Radiometer-only maximum readings obtained given.
2. Radiometer-only maximum readings obtained given.
3. Range of temperalurc-only maximum and minimum readinga obtainged given.

The following statement gives a summary of triangulation for seasons 1909-10 and 1910-11 :-

Mr. Abdul Hai has been employed during season 1910 in repairing stations of Montgomerie's Series. By August he bad visited and repaired 7 stations between Haramukh and Skardu. From Skardu he has gone up the Indus valley to visit stations from which it is hoped a base will be obtainable to take observations next season to Teram Kangri, the high peak situated at the head of the Siachen glacier discovered by Dr. Longstaff during his explorations in 1909. Dr. Longstaff believes this peak to be one of the highest of the Himalaya and it is very desirable to obtain an accurate record of its height.

Upper Irrawaddy Series.

This series is a new series based on the side Tangte-Lakar Bum of the Great Salween Series.

As the topographical work was about to commence in the district round Bhamo, it was thought preferable to commence this series, so that the stations might be utilised, rather than continue the Great Salween Series. The series runs northward from its base following the Burma frontier as far as latitude 26°; it will then bend westward and follow the northern frontier to meridian 96° when a connection will be made with the Mandalay Meridional Series by an extension of this latter to latitude 26°. It is hoped that it will be possible to extend the new series later to meet the Assam Valley Series and form a second connection with the India triangulation, the other connection having been made in season 1898-99 by means of the Manipur Longitudinal Series.

The detachment under Lieutenant Cardew reached Bhamo on the 9th November 1909 and field work commenced on the 20th of that month.

Lieutenant Cardew completed two quadrilaterals but was prevented by haze from observing the last ray of the third quadrilateral, though forward rays of the fourth figure were obtained from one station.

An astronomical azimuth was observed at Kumtung Bum.
Mr. Norman and Mr. Abdul Karim were employed throughout the season in selecting and building advance stations.

The field season was closed at Myitkina on the 13th March 1910, and the detachment left for India on the 28th March.

The following statement gives a summary of the season's work :-
Number of principal stations observed at 9
" " " newly fixed 4
" " " \quad " provisionally . . 3
" вecondary ," " , 3
Length of triangulation completed in miles 112
Area of triangulation in square miles 2,900
Average triangular error of eight triangles $0^{* *} 381$
Value of astronomical geodetic azimuth $-6^{*} 68$
The bealth of the detachment was good throughout the season.

Secondary Triangulation.

Up to the present time no regular programme for secondary triangulation has ever been prepared. In former years, when necessity arose, a series was run either by a member of the topographical or of the trigonometrical branch according as the one or the other had an observer available. If undertaken by the former, permanent stations were not built and much good work has thus been lost. It is proposed in future to carry out a regular scheme of secondary triangulation which will break up the gaps between the principal triangulation, giving permanent points which, besides being available for present work, will be preserved in the same manner as principal stations for the use of posterity.

The form of pillar selected for these stations is square to distinguish it from the round pillar used for principal work. The length of the sides of the triangles is limited to 10 miles; this, however, will probably with advantage be altered to 15 or even to 20 miles.

The work has so far been executed with $8^{\prime \prime}$ micrometer theodolites, but $6^{\prime \prime}$ would probably give sufficient accuracy.

The signals observed vary with the nature of the country; where thick haze predominates, it is necessary to resort to luminous signals, but with clear weather work of a high order can be done to non-luminous signals.

The advantage of the latter is that they need no signaller to be kept on the station, and expenditure is considerably reduced. To obtain the full benefit of this, however, it is necessary to arrange to fix up the signal so that there is no possibility of its losing its centering or perpendicularity. The best method of securing this would seem to be to have a central hollow core to the pillar; the signal post could be fixed firmly in this and be stayed up by ropes or a wooden framework in addition. As the hollow core would not exceed 4 inches in diameter and would be flush with the top of the pillar, the station could be used either for luminous or non-luminous signals. The only objection would be that there would be no actual top mark ; if, however, sufficient care is bestowed on building in the core, its axis should be a straight line joining the actual mark with an imaginary point vertically above it. This imaginary point could always be found by taking the centre point of the circle or square forming the top of the core.

Two secondary series, the Mawkmai and the Khasi Hills, were commenced during the season under review ; these were selected as topographical operations were akout to commence in these districts.

The Mawkmai Series.

The Mawkmai Series is based on the side Letpathaung-Suletaung of the Mandalay Principal Meridional Series. It runs eastward along parallel $19^{\circ} \cdot 30^{\prime}$ until it reaches the Siamese boundary, which it then follows until it meets the side Loi Pakhan-Loi Tum of the Monghsat Secondary Series about the meridian $99^{\circ} 30^{\circ}$.

Mr. Collins who had built the stations of the series up to the meridian of 98° in $1908-09$ was in charge of the detachment; he was assisted by Mr. Mohan Lal Arora and Mr. Gopalachari.

The detachment arrived at Pyinmana early in November 1909; but uwing to the wet weather commencement of the work was delayed until the 11th of that month.

Mr. Mohan Lal Arora took up the work af selection and building stations from the point where it censed the preceding season. He complated this work und observed at three stations at the eastern end of the series.

Mr. Gopalachari joined the detachment on the 9th December and observed at 14 stations of the west end of the series.

Mr. Collins after instructing Mr. Gopalachari in his work proceeded to the middle of the series and worked eastward, finally joining up with the Monghsat Series on the side Loi Putpakka-Loi Kan Mong, to enable his work to be based on this series, so that the data thus obtained could be utilised for topographical work.

Next season the gap between Mr. Gopalachari's and Mr. Collins' work will be filled in and the series extended to the side Loi Pakhan-Loi Tum of the Monghsat Series.
$8^{\prime \prime}$ micrometer theodolites were used by all the observers.
Luminous signals were used for the base stations; at all other stations nonluminous signals were employed.

The outturn during the season is as follows :-
Number of new stations built 16
," stations observed at 31
,, ", fixed 36
Length of triangulation completed in miles 140
Area of triangulation completed in miles 1,810
Average triangular error of 25 triangles $\mathbf{1}^{\prime \prime} 〔 9$
The series uh n completed will be 200 mils in length.
The hcalth of the detachment was good throughout the season.
The Khasi-Jaintia Hill Series.
This series was initiated in order to give data for the topographical operations now being carried on in this district.

Unfortunatcly the series was based on a side of the Eastern Frontier Principal Series, the stations of which are known to have been seriously disturbed by the earthquake of 1897. The series will be run through the Garo Hills during the coming field season to meet the Brahmaputra Meridional Series on a side of which it will be finally based. Until this is done the data computed are only provisional.

Mr. Smith, who was in charge, assembled his detachment at Shillong on the 8th November 1909 ; preliminary arrangements necessitated a halt there till the 27th November.

Mr. Smith then proceeded westward erecting signals on the stations built the preceding season. He commenced observations at his most westerly stations on the 27th December. On the 23rd April 1910 he closed work on the side Landau Modo-Mautherrichan of the Eastern Frontier Series. A very dense haze was experienced throughout the progress of the work, and Mr. Smith found that observing to non-luminous signals was impossible; these had therefore to be replaced by luminous signals.

Mr. Wyatt was employed in selecting and building stations for the extene: of the series eastwards between the parallels of $25^{\circ} 30^{\prime}$ and 26° starting from the base Laidera-Dinghei of the Eastern Frontier Series.

Mr. Smith used an $8^{\prime \prime}$ micrometer theodolite for his observations.
The following is the outturn of the season's work:-

Tertiary Triangulation.

The topographical survey of Kashmir carried out in the years 1855 to 1863 was on the $\frac{1}{2}$-inch scale; for the purposes of that survey a good main secondary series of triangulation was run having minor series branching from it. The stations appertaining to these series are for the most part still in existence and can be utilised for the present survey.

The present survey except in the bigh mountainous districts is to be on the 1 -inch scale, and the points of the old tertiary triangulation, even if in existence, are not numerous enough for the larger scale.

The tertiary triangulation had therefore to be taken in hand de novo, and for this purpose Lieutenant King, R.E., with Mr. Simons and Lieutenant Mason, R.E., as assistants, was detailed to start triangulating in sheets $43{ }_{n, 12,16,-10}^{F}, 43 \mathrm{~J}$ and $43 \frac{\mathrm{~N}}{3,1,7, \mathrm{~s},}$

Lieutenant King assembled his detachment at Rawalpindi on the 15th March 1910.

Mr. Simons took up the work in 43 F.
Lieutenant King started reconnoitring in $43 \frac{\mathrm{~J}}{12,10,}$ and $43 \frac{\mathrm{~N}}{\mathrm{~s}, \mathrm{5},}$ keeping dieutenant Mason with him for instructional purposes.

At the end of August the triangulation in the following sheets had been com. pleted:$43 \frac{\mathrm{~F}}{11,12,15,10}$
$43-\frac{\mathrm{J}}{4}$ and portions of $43 \frac{\mathrm{~J}}{3,7}$.
$43 \frac{\mathrm{~J}}{\mathrm{~B}, \mathrm{Q}, 10}$, have also been reconnoitred.
Lieutenant King and Mr. Simons closed their field season in the middle of September owing to the prevalence of cholera.

During the recess season all the detachments have been employed on the computations of their field work; these have all been completed.

In addition Lieutenant Cardew bas been employed in checking and continuing the computations of Captain Wood's Tibet triangulation in order to add to the number of fixed peaks in that country. No additions could be made in the eastern portion of the work, but several new peaks have been located in the west.

III.-Levelling.

By Mr. C. F. Erskine.

No. $17{ }^{\circ}$ Party (Triangulation and Levelling).

Up to the end of February 1910 the levelling operations formed part of

Impirial O/ficers.

Mr. C. F. Erskine, in charge up to Februncy 28th, 1910.
Major J. M. Burr, R.E., in charge from Mars h 1st, 1910.

Prorincinl Officers

Messrs. F.. H. Corridon, A. M. Talati, O. N. Pushong, D. H. Luxa, T. F. Kitchen, H. St. J. Kenny and O. D. Jackson.

Upper Subordinate Officers.
Messrs. Karuna Kumar Das and Bidhu Bhushan Shome.

Suberdinate Establishment.
9 Recorders.
the work of No. 25 Party (Tidal and Levelling), and the strength of the levelling detachments was included in the personnel of that party. From March 1st 1910 the Tidal and Levelling Sections were separated, and a new party, designated No. 17 Party (Triangulation and Levelling), was created, of which the levelling Sections of the late No. 25 Party formed the nuclens.
The personnel of the party during the year under report was as shown in the margin.
Strength of levelling detachments.-During the jear under report three levelling detachments were engaged on spirit-levelling operations. The strength of these detachments in the field was as detailed below.

No. 1 Detachment.-Mr. E. H. Corridon 1st leveller, Mr. H. St. J. Kenny 2nd leveller, Mr. Bidhu Bhushan Shome under training.

No. 2 Detachment.-Mr. O. N. Pushong lst leveller, Mr. T. F. Kitchen 2nd leveller ; Mr. D. H. Luxa joined this detachment in February 1910 on completion of the erection of rock-cut bench-marks on the Himalayan lines.

No. 3 Detachment.-Mr. A. M. Talati 1st leveller, Mr. O. D. Jackson 2nd leveller, Mr. Karuna Kumar Das under training. Mr. D. H. Luxa also worked with this detachment up to November 24th, 1909, and after that date he was deputed to lay down rock-cut bench-marks on the Himalayan lines in advance of levelling operations.

Programme for past feld season.-The following programme of work was allotted to the detachments:-

No. 1 Detachment-
(i) New levelling from Wuntho to Myitkyina.
(ii) Revision levelling from Rangoon to Pyinmana.
(iii) The connection of the standard bench-marks at Rangoon, Pegu, Toungoo, Mandalay, Shwebo, Meiktila, Magwe, Wuntho and Myitkyina, with the adjacent lines of levels.
No. 2 Detachment-
(i) Levelling from Hardwar along the railway line to Kotdwara, ănd thence along the road to Lansdowne.
(ii) Levelling from Bareilly along the railway line to Kathgodam, aud thence along the road to Naini Tal (Brewery).
(ii.) Levelling from Ambala along the railway line to Kalka, and thence by the cart road to Solon.
(iv) Levelling from Siliguri to Tindharia by road.
(v) The connection of the standard bench-marks at Lucknow, Patna (Bankipur), Muzaffarpur, Motihari, Bhagalpur, Purneah, Dinajpur, Gaahati, Dhubri, Burdwan, Balasore, Cuttack, Berhampur (Madras), ,

Vizagapatam, Coconada, Bezwada, Nellore and Rewah, with the adjacent lines of levels.
Subsequently the connection of the new standard bench-mark at Calcutta was added to the above programme, and the levelling from Ambala to Solon, and the connection of the standard bench-marks at Gauhati and Dhubri were postponed until next field season.

- No. 3 Detachment-

(i) The connection of the standari rench-marks at Sadikganj, Bahawalpur, Khanpur, Sukkur, Karachi, Jacobabad, Hyderabad (Sind), Rajkot, Godhra, Baroda, Surat, Dhulia, Mhow and Bhopal (2), with the adjacent lines of levels.
(ii) Levelling from Shikarpur to Jacobabad, including the connection of the standard bench-mark at the latter town.
(iii) Levelling from Pali h. s. to Godhra, including the connection of the standard bench-mark at the latter town.
(iv) Levelling from Laluwali G. T. Survey Station to Khanpur, and thence to Rohri along the railway line.

- (v) Levelling from Lahore along the railway line to Pathankot, and thence along the cart road via Dharmsala to Dharmkot.
No. 1 LEVELLING DETACHMENT.
Tabular statement of outturn of work.-Season 1909-10.

No. 2 Levelling dei achment.
Tabular statement of outturn of work.-Season 1509-10.

Tabular statement of outturn of work.-Season 1909-10.

No. 3 Levelling detachment-continued.
Tabular statement of outturn of work. - Season 1909-10.-continued.

No. 1 Levelling Detachment.
List of Great Trigonometrical Survey principal stations connected by spirit-levelling in 1909-10.

Name of station.	Heiait in feet above Mean Sea Level.		Difference of height by triangulation in feet.	Remabeg.
	*Spiritlovelling.	Triangulation.		
Mandalay Meridional Series.				
Toungoo S. . . .	176.940	185.7	$+8.700$	Upper mark-stono.
Omaza S. . .	291.000	$300 \cdot 7$	+9700	Ditto.
Thónbinzin H. S. . .	1,912.064	1,031.9	$+19.830$	Ditto.

* The heights in this column have received a correction of +0.904 foot to reduce them to M. S. L. at Elephant Point Open Const Tidal Station.

No. 2 Levelling Detachment.
List of Great Trigonometrical Survey principal stations connected by spirit-levelling in 1909-10.

No. 3 Levelling Detachment.
List of Great Trigonometrical Survey principal stations connected by spirit-levelling in 1909-10.

Name of station.	Heiolit in peet adove Mean Sea Level.		Difference of height by triangulation in fect.	Remaris.
	$\left\lvert\, \begin{gathered} \text { Spirit } \\ \text { levelling. } \end{gathered}\right.$	Triangulation.		
Jhembhera Tower Station-Sutlej Scrica	607.411	(600.9)*	*	- Height of original mark. stone at ground floor. The spirit-levelling height refers to the new marls-btone fired in 1909-10 at ground floor.
Fatohgarh Tower Station-Sutlej Series	$504 \cdot 834$	(568) ${ }^{\text {a }}$	\cdots	
Godri Tower-Station-Sullej Series . .	$379 \cdot 511$	$380 \cdot 7$	+1.180	Hoight ol mark-atone at ground floor.
Moni-Dhai Tower Station-Jogi-Tila Meridional Series	558.709	$(502 \cdot 81)^{\bullet}$.'	
Lalgarh Tower Station-Oreat Indus Series	282.815	$282 \cdot 77$	-0.045	Hoight of merk-btone at ground lloor.
Sultan-Ea-got Tower Station-Orcat Indus Serico	189.165	188	-1/155	Ditto ditto.

List of Great Trigonometrica! Survey pr ncipal s'a'ons connected by spirit-levelling in 1909-10-continued.

Name of station.	Heghet in feet above mean Sea Level.		Differ. ence of height by triangulation in feet.	Remarks.
	Spirit levelling.	Triangulation.		
Karachi Observatory Station-Greal Indus Series	31.836	$(35 \cdot 44) *$	\cdots	* Height of original upper mark-stone. The spirit-levelling height refers to new upper mark-stone fized in 1893-94.
Mutrani Hill Station-Otreat Indus Series	254.387	253	-1-387	Height of upper mark-stone
Vin Tower Station-Eustern Sind Meridional Serirs .	$243 \cdot 628$	249	+5.372	Height of mark-stong at ground Door.
Kot Sabzal Tower Station-Eistern Sind Mcridional Series.	$270 \cdot 861$	274	+3.139	Height of upper mark-stone.
Got Mir Muhammed Hill Station-Ensern Sind Mferidional Strics.	266.684	270	+3.316	Ditto. ditto.
Dewari Tower Station-E stcrn Sind Mcridional Series.	265.920	270	+4.074	Ditto. ditto.
Vijnot Tower Station-Eastern Sind Meridional Scries	257.910	263	$+5.090$	Height of mark-8tone at ground tloor.
Tung Tower Station-Gurhagarh Meridional Series	757.333	$757 \cdot 6$	+0.267	Ditto ditto.
Chowinda Station-Gurhagarh Meridional Series	$832 \cdot 733$	833	+0.267	Height of upper mark-stone.
Pagwangir Station-North Wcal Himaliya Scries .	957-421	949•8	-7.621	Height of upper mark-stono. The mark-stone was found about 10 feet above ground level ; in the Synoptical Vol ume the pillar is given only feet above ground level.

Difference between levellers (First-SGiond) :-
No. 1 Detachment-

Section Rangoon to Pyinmana.

At 50th mile	.	.	.	\cdot	-0.066	foot
$" 100$ th	$"$	+0.002

Section Wuntho to Myitkyina.

At 50th mile	-0.050	foot.
$" 100 \mathrm{th}$	$"$	\cdot	\cdot	\cdot	.	\cdot	\cdot	\cdot	\cdot	-0.029

Section Hardwar to Lansdowne.

At 50th mile	.	end of section	.	.	.
.					

Section Bareilly to Naini Tal Brewery.

At 50 th mile						
, end of section
+0.003	foot.					

Section Siliguri to Tindharia.
At end of section -0.155 foot,

No. 3 Detachment -

Section Laluwali G. T. S. to R.hri.

Section Lahore to Dharmkot.

Rock-cut bench-marks.-The bench-marks hitherto determined by spiritlevelling operations in India are mostly situated on alluvium : in many instances they have been inscribedon bridges, culverts and railway platforms. These benchmarks were originally intended to be of use to enginecrs, but they cannot be regarled as permanent standards of height, and are therefore useless for scientific purposes. It is evident that marks cut on solid ground rock, if carefully selected, are the only ones that can be accepted as really permanent. On examining the lists of benchmarks already fixed, the number of marks that have been engraved on ground rock was found to be extremely small. In 1909 steps were taken to increase the number of rock-cut bench-marks in all parts of India. Instructions were issued to the levelling officers to fix as many bench-marks as possible on ground rock in the course of their work. It is intended to have many more bench-marks on ground rock in future, as the levelling operations are extended, and suitable sites become available. A rock-cut bench-mark consists of the inscription $\underset{\substack{\text { c.r.s.s. } \\ \text { B.s. }}}{\substack{\text {.. }}}$ neatly and deeply engráved on the rock, which has been previously smoothed off where necessary.

In order as far as possible to prevent these marks being obliterated by atmospheric causes and by growth of vegetation, some of them are protected by pillars. A protecting pillar for rock-cut bench-marks was introduced in 1909. The pillar is of masonry, 2 feet square and 1 foot in height, with a hollow centre 6 inches square. The top of the pillar is closed in by a stone slab which bears the inscription
 the circle cut on the rock in situ. During the year under report 150 rock-cut bench-marks were laid down and connected with levelling, and of these 49 were protected by masonry pillars of the above description.

Bimalayan lines of levelling.-The following lines of levels have been proposed :-
(1) Siliguri to Tindbaria.
(2) Bareilly to Naini Tal (Brewery).
(3) Hardwar viâ Najibabad to Lansdowne.
(4) Lahore vî̀ Pathankot to Dharmkot.
(5) Ambala to Solon.
(6) Rawalpindi to Murree.

Levelling operations had already been carried out from Dehra Dun to Mussooree in 1905 and 1907. This line was to be the model on which the other Himalayan lines were to be based, and steps were taken early in the season last year to place this line on a permanent scientific basis, by improving the inscriptions on the existing rock-cut bench-marks on the line, and by laying down additional rock-cut bench-marks and protecting the same by runsoury pillars. Sirteen new rock-cut bench-marks were erected between Rajpur, Mussoore,

Banog and Landour, and these were duly connected by spirit-levelling; of these bench-marks 15 were protected by masonry pillars. The new rockcut bench-marks consisted of the inscription $\underset{\text { n. }}{\substack{\text { o.t. } \\ \text { N. }}}$ instead of the usual inscription $\begin{gathered}\text { g. т.s. } \\ \text { s. . . . } \\ \text { s. }\end{gathered}$, in order to distinguish them from the old bench-marks. The standard bench-mark built at Mussooree was also connected by levelling in the course of the above work. During the season under report the first four of the Himalayan lines mentioned above have been completed. The last two lines mentioned will be completed during the field season of 1910-11.

During the past year 30 standard bench-marks were erected and 41 connected, 4 are under construction ard 37 have been proposed for construction.

The following is a complete list of the standard bench-marks as they stood at the close of the year 1909-10 :-

Agra, Almedabad, Almeduagar,* Alkola, Aligarh, Allahabad (two), Ambala, Attock, Bahawalpur, Balasore, Bangalore, Bankipore, Bareilly, Barisal,* Baroda, Belgaum, Bellary, Benares, Berhampur (Madras), Bezwada, Bhagalpur, Bhopal (two), Bijapur, Bikanir, Bilaspur, Bombay (two), Burdwan, Calcutta, Calicut, Chittagong,* Cocanada, Comilla,* Cuddapah, Cuttack, Dacca,* Deesa, Dehra Dun (two), Delhi, Deolali, Dera Ismail Khan, Dhubri,* Dhulia, Dibrugarh, \dagger Dinajpur, Ferozepore,Fyzabad, Gauhati,* Ghazipur, Godhra, Gorakhpur, Gwalior, Hinganghat, Hyderabad (Sind), Jacobabad, Jhansi, Jhelum, Jodhpur, Jubbulpore, Karachi, Khanpur, Kirkee, Lahore, Lucknow, Ludhiana, Madras, Madura, Magwe, Mandalay, Meerut, Meiktila, Mhow, Mirzapur, Motihari, Mozuffarnagar, Multan, Mussooree, Muttra, Muzaffarpur, Myitkina, Mymensingh, \dagger Nagpur, Negapatam, Nellore, Pegu, Peshawar, Poona (two), Purneah, Raichur, Raipur, Rajkot, Rangoon, Rawalpindi, Rewah, Rurki, Sadikganj, Saharanpur, Salem, Sambalpur, Satara, Saugor, Secunderabad (three), Shahjehanpur, Sholapur, Shwebo, Silchar, \dagger Sitapur, Sukkur, Surat, Sylhet, \dagger Tinnevelly, Toungoo, Trichinopoly, Vizagapatam, Wuntho.

Totals.-									
Completed and connected	110	
Completed, not yet connected	7	
Under construction	4
							Total	.	121

Revision levelling, Rangoon to Mandalay.-The original levelling from Rangoon to Mandalay was carried out in season 1892-93. Subsequently in season 1902-03 a branch line of levels to Magwe and Minbu was started from Thazi railway station, situated on the Rangoon-Mandalay main line of levels, and levelling operations were also extended from Mandalay viâ Sagaing to Shwebo.

Before commencing nerv work it was necessary to verify the heights of the old bench-marks at Thazi and Mandalay railway stations. The check-levelling carried out at both places disclosed such grave discrepancies between the old and the new heights of some of the bench-marks, that strong doubts were entertained as to the accuracy of the old levelling generally, and also as to the stability of the old benchmarks; and it was decided to revise the line from Mandalay towards Rangoon, until some old bench-marks were found the heights of which could be proved without doubt to have remained unaltered. Revision levelling was accordingly resumed from Mandalay in season 1903-04, and carried as far south as Pyinmana. The general resuits of this revision were not considered to be satisfactory, inasmuch
as it could not be proved conclusively that any old bench-marks had remained undisturbed since 1892-93. If the embedded bench-mark at Mardalay was accepted as undisturbed, the bench-marks towards Pyinmana appeared to have sunk : on the other hand by accepting Pyinmana embedded bench-mark as correct, the bench-marks towards Mandalay seemed to have risen. This question could only be satisfactorily solved by continuing the revision levelling from Pyinmana down to Rangoon. This was done during the season urder report.

Revision levelling was commenced at Rangoon in November 1909, and closed at Pyinmana in February 1910. Complete data are now available, and by combining the results of the present revision work with those of season 1903-04 we are able to determine with some degree of certainty what changes have occurred in the position of the various bench-marks since they were first connected in 1892-93.

These results are set forth in the accompanying tables and the differences between the original and the revised levelling are shown in the last column of the tables.

The heights of both the original and the revised levels are based on Graham Smith's bench-mark at Rangoon, which has been proved to have remained unalter ed in height since 1892-93. This bench-mark was erected by the Marine Survey many years before the advent of the first levelling party of the Survey of India in Burma, and all the heights in Rangoon were originally based on it. It is the bench-mark of reference for the Rangoon tidal observatory, and is connected by levelling every year by the tidal inspecting officer, with the bed-plate of the tidegauge and other neighbouring bench-marks, to see if any relative changes have occurred in their various heights. No appreciable change in this bench-mark has as yet been discovered by the tidal officers, and further this is borne out by the results of the revision levelling carried out by the levelling detachment in November 1909.

It will be seen from the accompanying table that the difference of height between this bench-mark and four other bench-marks at Rangoon as now determined, is practically identical with that found in 1892-93.

The differences between the o'd ard the revision levelling may be due to the following causes :-
(1) Errors in the adopted length of the mean staff in the o.d or in the revised levelling, or in both.
(2) Observational inaccuracies.
(3) Movements of bench-marks during the time that has elapsid between the original and the revision work.
It may here be stated that there is no reason at all to question the accuracy of the revision levelling, as regards the first two causes of error mentioned above. Great care has been taken during the last ten years to determine the true length of the staves frequently in the field. The staves are now compared with a portable standard bar once a week, and the method of comparison has been greatly improved. The general system of levelling has been recoustructed and many improvements have been introduced, to place it on a more scientific basis, in order to obtain the maximum amount of accuracy. If therefore any errors have been intrcduced into the work on account of the first two causes, the old levelling must be responsible for the same.

On examining the records of the original levelling it was fourd that tha staves were only compared with the standard bar at Rangoon on commencing worls, and again at Mandalay at the close of the operations. The consequent unit correctious applied to the observed dilierences of level were therefore inadequate anu
inaccurate. The country between Rangoon and Mandalay varies so greatly in character from wet to dry, that frequent comparisons of the staves are absolutely necessary. When the revision levelling party was at work in Lower Burma, the water in the rice fields through which the railway passes was almost up to the level of the line, and the detachment was compelled to encamp on the platforms of the railway stations.

The work of 1892-93 must therefore be burdened with any errors arising from this source ; but looking at the discrepancies between the original and the revised levelling, it appears that they cannot be wholly attributed to any error in the adopted length of the mean staff. It is probable that only a fraction of the dis. crepancies disclosed are due to this cause. In support of this view it may be noted that from Rangoon to Tawa, a distance of 40 miles, the observed heights of bench-marks are all within 10 feet, but the discrepancies on this length range from 0.001 to 0.265 of a foot. These could not possibly be due to the erroneous length adopted for the mean staff, unless we are prepared to accept that the mean staff was wrong by 0.1 to 0.2 of a foot. Similarly when we examine the differences at various points further along the line, we find that there is no regularity or harmony between these differences and the corresponding heights, as will be seen from the following table :-

Number of bench-mark.	Height above Rangoon. H.	Difference between old and revised levels. ($\mathrm{R}-0$).	Rise or Fall. $\Delta \text { H. }$	Variation in difference. Δ (R-0).	staf error decessary to ac count for variation $\begin{gathered} =10+\Delta \\ (\mathrm{R}-0) / \Delta \mathrm{H}^{\prime} \end{gathered}$
	Feet.	Feet.	Feet.	Feet.	
76	26.6	$+0.068$			
			$0 \cdot 3$	-0.057	-1.900
108	$26 \cdot 3$	$+0.011$			
125	6.6	$+0.012$	$39 \cdot 3$	$+0.001$	$+0.000$
			$76 \cdot 1$	$+0.031$	+0.004
150	141.7	$+0.043$	0.2	-0.097	-4.850
183	141.9	-0.054		-0.057	-480
			27.7	$+0.061$	$+0.022$
195	$169 \cdot 6$	$+0.007$	$34 \cdot 2$	-0.027	-0.008
207	$203 \cdot 8$	-0.020			
$\frac{1}{24}$	$405 \cdot 7$	$+0.019$	201.9	+0.039	+0.002
24	405	+0010	$34 \cdot 6$	$+0.075$	$+0.022$
255	371-1	$+0.094$			
			$100 \cdot 5$	+0.111	$+0.011$
263	471.6	$+0.205$	66.3	-0.071	-0.011
$\frac{8}{209}$	537.9	$\ldots+0.134$			
` 283	$648 \cdot 9$	$+0.216$	111.0	+0.082	-0.007
			$129 \cdot 7$	-0.014	-0.001
297	$519 \cdot 2$	$+0.202$	$282 \cdot 7$	$+0.007$	$+0.000$
338	236.5	$+0.209$			
$\frac{\mathrm{c}}{344}$	$236 \cdot 1$	$+0 \cdot 266$	0.4	$+0.057$	+1.425

The values in the above table have been taken from localities in which several discrepancies appear to be in close accord.

There is then the question of observational inaccuracies. There is no direct evidence to prove that the results have been appreciably affected by systematic
errors of observation, but considering that the levelling of 1892-93 was done under the old system, when it wás customary to observe at long distances regardless of the unsteady appearance of the staves due to radiation, it is possible that the results may have been, to a certain extent, affected by systematic cumulative errors. The line Rangoon to Mandalay runs approximately from South-by-East to North-by ${ }^{-}$ West, hence one staff, the northern one, was constantly illuminated, while the other staff was shaded from the sun. Radiation is apparent earlier and to a greater extent on the illuminated staff than on the shaded one, and hence a constant error might be introduced into the levelling on this account.

Since the year 1900 steps have been taken to remedy this defect in the levelling work, by making it a rule that no observations are to be taken at a longer distance than 5 chains, and these only under the most favourable conditions of the weather when no radiation is appreciable on the staff.

It must be borne in mind that any satisfactory discussion or investigation of the observational errors must be based on the assumption that the bench-marks concerned have retained their original heights ; but as explained later on, there are strong grounds for believing that the whole line of levelling between Rangoon and Mandalay has suffered more or less from the movement of bench-marks. It is therefore clearly impossible to ascertain the extent to which the results of 1892-9f have suffered from observational errors.

We now come to the last, though by no means the least, possible cause of the discrepancies, namely, the movements of bench-marks during and after the original levelling. By looking at the table of differences between the old and the revision levelling it is found that the discrepancies at many bench-marks are considerable and out of harmony with the neighbouring bench-marks, and 'there seems to be no other way of explaining these exceptional discrepancies than by attributing them to the fact that the bench-marks have either sunk or risen since they were originally determined in 1892-93. For instance, bench-marks Nos. 17, 19, 37, 39, 45, 119, 186, 203, $\frac{a}{230}, \frac{\mathrm{a}}{243}$ and 322 appear to have sunk, while bench-marks Nos. $30,83,232, \frac{a}{202}, 263,274, \frac{2}{280}, 280,286,291,-201,302$, $303,306,307,312$ and 321 seem to have risen : the extent of the movement in either case being from $0 \cdot 1$ to 0.4 of a foot.

The discrepancy at bench-mark No. 30 appears as if it might be due to human agency, while the disturbance at the other bench-marks is probably due to the rising or sinking of the ground on which they were erected. The difference inter se between two consecutive bench-marks Nos. 321 and 322 only 3 miles apart amounts to over 1 foot, the former having apparently risen and the latter having sunk six inches. Almost all the bench-marks along the line Rangoon to Mandalay are situated along the railway line, being on the parapets of bridges and on culverts or on the platforms of railway stations. The discreppancies might partially have been caused by the vibration due to moving loads on bridges which were originally built for a lighter type of rolling stock, combined with the constantly recurring repairs to bridges, etc. When so many bench-marks show unmistakable signs of subsidence or upheaval, a reasonable doubt may be entertained regarding the atability of the remaining bench-marks.

If now it is accepted that the discrepancies found in the majority of the benchmarks are due to changes in their positions, the following conclusions are arrived at:-
(1) There has apparently leen a slight subsidence from Rangoon to near Tangyi, the embedded bench-mark at Rangoon having remained intact.
(2) The embedded bench-mark at Tawa has remained practically unaltered but the embedded bench-mark at Pegu has sunk slightly. From Pegu the benchmarks have risen to about Paungdawthi, after which the discrepancy becomes inappreciable.
(3) The line from Paungdawthi to Pyinmana may be accepted as correct, with the exception of the embedded bench-marks at Peinzalok, Toungoo, Yedashe, Pyiwin and Pyinmana, which have sunk.
(4) Shortly after leaving Pyinmana there is a slight upheaval which gradually increases in magnitude to about mile 270 from Rangoon, after which it remains fairly coustant until the end of the line; the maximum amount of upheaval being visible between Meiktila Road and Hanza railway stations.

Results of revision levelling from Rangoon to Mandalay.

Results of revision levelling from Rangoon to Mandalay-continued.

Results of revision levelling from Rangoon to Mandalay-continurd.

Bench-marks of tie onionnal letelling connected dorina the revisionary oferationg.	No.	Distance from Rangoon.	Onserved heigut amove $(+)$ or ahlow (-) RaN. GONN"AS DETELMLNED in		Difference in height (revisedoriginal). The + sign denotes that the revised Leight was greater and the - sign less than the original beight.
Description			1892.93.	1909-10.	
		- Miles.	Feet.	Feet.	Feot
Cut on girder bridge	99	78.70	+28.634	+28.678	+0.044
Cut on girder bridge .	100	$80 \cdot 40$	+29.454	+29.507	+0.053
Cut on girder bridge .	101	81.45	$+30 \cdot 117$	+30.165	+0.048
Cut on gircler bridge	107	88.21	+30.337	+30.355	+0.018
Embedded at Pyuntaza railmay station	108	88.83	+26.293	+26.304	+0.011
Cut on base of distant gignal	109	$89 \cdot 24$	+25.044	+25.065	+0.021
Cut on girder bridge .	112	93.59	+27.845	+ 27.925	+0.080
Embedded at Peinzalobk railway station	119	102.69	$+50.782$	+50.611	-0.171
Cut on girder bridge .	122	105.14	+60.431	+60.490	+0.059
Cut on girder bridge .	124	$107 \cdot 49$	+68.975	+69.006	+0095
Cut on girder bridge .	125	108.70	+65.609	+65.621	+0.012
Embedded at Kgauktaga railway station	126	109.77	$+67.896$	+67.835	-0.061
Embedded at Penwegon railway station	131	115.31	+87.947	$+87.000$	-0.047
EmbeddedatKa-nyut Kwin railway atation	140	124.68	+95.923	+95.907	-0.016
Cut on girder bridge .	142	126-43	+105.095	+105.136	$+0.041$
Cut on girder bridge .	143	$127 \cdot 50$	+109.015	+109.058	+0.049
Embedded at Pyu railway atation	150	135.24	+141.690	+141741	$+0.043$
Cut on girder bridge .	154	138.24	+128.480	+128.498	$+0.018$
Cut on eirder bridge .	158	142-23	+114.489	+114.486	-0.003
Embedded at Nyaungchidauk railway ata. tion.	160	$144 \cdot 28$	+109.867	+109.835	-0.038
Cut on girder bridge .	163	147.02	+120.397	+120.412	+0.016
Embedded at Kywebwe railway etation	168	$150 \cdot 34$	+118.846	+118.834	-0.012
Embedded at Ohtwin railway station *	176	$159 \cdot 39$	+117.297	+117.251	-0.046
Cut on girder bridgo.	179	162.05	+116.400	+116.371	-0.029
Cut on culvert	181	164.43	+132.659	+132.614	-0.045
Cut on girdor bridge .	182	16501	+138.327	+138.284	-0.043
Cut on girder bridge .	183	105-14	+141.877	$+141.823$	-0.054
, Cut on girder bridge .	184	$166 \cdot 12$	+136.917	$\cdot+133.867$	-0.050
Cut on girder lridge	185	$166 \cdot 38$	+139.339	+139.311	-0.028
Embedded ut Toungoo railway station	180	$100 \cdot 88$	+143.200	+143054	-0.146
Toungoos.	$\frac{1}{180}$	$167 \cdot 41$	+103068	+,162.008	$\longrightarrow 0.070$

Results of revision levelling from Rangoon to Mandalay-continued.

Results of revision levelling from Rangoon to Mandalay-continued.

Bench-maris op tef obignal levelling CONNECTED DURINO THE REVIGIONART operations.	No.	Distance from Rangoon.	Observed heigmt adove (+) or aelow (-) Ran. goon as determined in		Difference in height (revisedoriginal). The + sign denotes that the revised height was greater and the - sign less than the original beight.
Description.			1802-93.	$\begin{gathered} 1909.10 \\ \text { and } \\ 1003-04 . \end{gathered}$	
		Miles.	Feet.	Feet.	Feet
Embedded at Pyiwin railway station	$-{ }_{239}$	$220 \cdot 16$	+256.459	+256.213	-0.246
Embedded at Pyinmana railway station	243	226.00	+298.511	+298.377	-0.134
Cut on platform coping	243	$225 \cdot 96$	+293.856	+298.817	-0.039
Cut on drain coping	${ }_{-245}^{84}$	266.70	$+317.843$	+317.941	-0.002
G. T. S. intersected point, Pyinmana	$\frac{1}{244}$	227.04	+405.652	+405.671	+0.019
Cut on girder bridge .	244*	226.46	+303.205	+303.192	-0.013
Cut on culvert of parapet	245	$228 \cdot 97$	+239.379	+289.357	-0.022
Cut on culvert of parapet .	246	$230 \cdot 46$	+288.402	+288.390	-0.006
Cut on girder bridge	247	231.89	+298.326	+208.299	-0.027
Cut on girder bridge .	248	233.22	+327.519	+327537	+0.018
Cut on culvert of parapet	249	234.88	+363.497	+363.521	$+0.024$
Cut on railway platform coping .	250	$236 \cdot 17$	+376.242	+376.253	+0.011
Embedded at Kyidaungan railway atation	$-{ }^{50} 0^{-}$	$236 \cdot 29$	+376.098	+376.119	+0.021
Cut on girder bridge	251	236-49	+374.682	+374.737	$+0.055$
Cut on bridge	252	237.71	$+365.653$	+365.685	$+0.032$
Cut on girder bridge .	253	238.77	+368.632	+368.656	+0.024
Cut on girder bridge .	254	$230 \cdot 46$	+375-973	+376.037	$+0.064$
Cut on culvert of parapet	255	241-22	+371/105	+371.199	+0.094
Cut on girder bridge .	256	242.52	+387.585	$+387.670$	$+0.085$
Cut on girder bridge	${ }_{255}$	$243 \cdot 93$	+393.017	+394.014	$+0.097$
Cat on culvert of parapet	257	$245 \cdot 28$	+390.583	$+390 \cdot 649$	$+0.066$
Cut on girder bridge .	${ }_{257}{ }^{\text {a }}$	$246 \cdot 20$	+402.441	+ $402 \cdot 494$	$+0.053$
Cut on culvert of parapot . . \therefore	258	$247 \cdot 24$	+402.199	$+402.250$	$+0.051$
Embuedded at Sbwemyo ailway station	259	247.75	+413.168	+413.002	-0.076
Cut on culvert of parapet .	260	248.58	+420.108	+420.167	$+0.059$
Cut on girder bridge	261	250.04	+435.321	+435-390	$+0.069$
Cut on girder bridge	${ }_{-261}^{\text {a }}$	251.64	+459.915	+460.042	$+0.127$
Cut on girder lridge .	262	252:51	+462.593	+462.667	$+0.074$
Cut on base of distant signal	${ }_{26}{ }^{\text {a }}$	254.00	+469-439	+4697715	$+0.276$
Embedded at Tatkon railway atation	263	$254 \cdot 34$	+471-419	+471746	+0.327
Cut on railmay platform coping	$\stackrel{\Delta}{203}$	$254 \cdot 38$	+471-560	+471.765	+0.205

[^0]Results of revision levelling from Rangoon to Mandalay-continued.

Results of revision levelling from Rangoon to Mandalay-continued.

Results of revision levelling from Rangoon to Mandalay-continued.

Results of revision levelling from Rangoon to Mandalay-concluded.

Brncifmarks of the original levellina connected durina the revisionary operations. Description.	No.	Distance from Rangoon.	Onservid heio (+) OR BELOW oool as Dete 1892-93.	IT ABOVE (一) Rin. MNED IN 1903-04.	$D_{\text {ifference }}$ in height (revisedoriginal). The + sign denotes iblat the revised hi ight wan greater and the - sign le:s than the origina! height.
Cut on girder bridge	335	Miles. $366 \cdot 89$	$\begin{aligned} & \text { Feet. } \\ & +249 \cdot 016 \end{aligned}$	$\begin{aligned} & \text { Feet. } \\ & +250.093 \end{aligned}$	Feet. $+0.177$
Cut on base of home seramplore . .	337	$369 \cdot 95$	+238.745	+238.941	$+0.196$
Cut on girder bridge	338	371.01	+236.492	+236.701	$+0 \cdot 203$
Cut on canal bridge	339	$372 \cdot 91$	$+245 \cdot 673$	$+245 \cdot 917$	+0.244
Cut on Myitnge bridge . . .	340	$377 \cdot 00$	+232.372	+232.571	$+0.190$
Cut on Myitnge bridge	$\frac{\square}{940}$	377-53	+232.542	+232.806	$+0.264$
Cut on base of home semaphore . . .	341	$378 \cdot 28$	+237.452	+237.728	$+0.276$
Embedded at Myitnge railwey station .	$\frac{8}{341}$	378.31	$+236.653$	+236.908	+0.255
Cut on railway platform coping . . .	344	383.98	+234.754	+235.111	$+0.357$
Cut on girder bridge . .	$\frac{8}{344}$	385-53	$+234 \cdot 566$	+234.797	+0.231
Cut*on base of water column, Mandalay	$\frac{\mathrm{b}}{344}$	386-43	$+234 \cdot 342$	+234.687	$+0.345$
Cut on base of home semaphore, Myohaung	34.5	384.00	+235.487	$+235 \cdot 816$	$+0.329$
Embedded at Mandalay railway station	$\frac{6}{944}$	386.74	+236.123	+236.389	$+0.266$
Embedded at Marine Transport Office, shore	$\frac{8}{344}$	388.74	+ $+211 \cdot 112$	+211.300	+0.188
Cut on revetment wall, Mandalay shore .	$\xrightarrow{\wedge} 2$	$388 \cdot 61$	+225.777	+225.972	$+0.195$
Cut on S. railway gate, Fort Dufferin . .	- $\mathrm{C} 14{ }^{-1}$	387.48	+ $+236 \cdot 116$	+236.222	$+0 \cdot 106$
P. W. Department beach-mark, Fort Dufferin	$-{ }_{-344}^{c z}$	388-62	$2+233 \cdot 790$	$+233.913$	$+0.123$
B. M. embedded at Fort Dufferin . .	$\frac{09}{344}$	$388 \cdot 57$	$7+232.002$	+232.228	$3 \quad+0.226$

- IV.--Geodetic Survey.

A.-ASTRONOMICAL LATITUDES.

By Major H. L. Crosthwatt, R.E.

No. 13 (late 2?) Party.

Personnel.

Major H. I. Crosthwait, R.E., in eliarge from 5th April 1910.

Iieutonant H. J. Couchman, R.E., till 20th June 1910 (in charge till 4th April 1910).

Mr. R. Waller-Senior, from soth April 1910. 2 Computers.

During the season of 1909-10, 11 latitude stations were occupied, 5 of these being situated on that portion of the Karara Meridional Series which lies north of the Ganges and the remainder on the NorthEast Longitudinal Series.
The method of observation and the instrument used were the same as in the season 1907-08, the electric glow lamp for illuminating the field of the telescope being most satisfactory. One of the levels, Holme's No. 6, was found to be cracked at the beginning of the season and was replaced by No. 10 . On an average the programme at each station consisted of 64 observations to 54 stars, the great majority of these being taken from Newcomb's catalogue of fundamental stars, the Greenwich catalogue of 1880 being used in only a few cases.

The results of the season's observations are exhibited in the following table :-

TABLE I.

Name of station.			Longituce.	IIcight above M. S. L.	Astronomical latitude.	Seconds of Geodetic latitude.	$\begin{gathered} \text { Dellection } \\ \text { A-G. } \end{gathered}$
Sora T	T. S.		$81^{\circ} 12^{\prime}$	400	$26^{\circ} 15^{\prime} 92 \prime 30$	18".83	$+7 \times 56$
Pariaon	"		$81^{\circ} 22^{\prime}$	346	$25^{\circ} 50^{\prime} 11^{\prime \prime} 59$	$5^{\prime \prime} \cdot 26$	$+6 \cdot 33$
Parewa	"		$81^{\circ} 12^{\prime}$	380	$26^{\circ} 38^{\prime} 11^{\prime \prime} \cdot 44$	$4^{1 / 0} \cdot 0$	$+7^{\prime \prime} \cdot 44$
Utiamau	"		$81^{\circ} 12^{\prime}$	386	$26^{\circ} 59^{\prime} 61^{\prime \prime} 62$	57".08	$+4^{\prime \prime} \cdot 5$
Imlia	"	.	$81^{\circ} 8^{\prime}$	428	$27^{\circ} 19^{\prime} 17^{\prime \prime} .83$	18".90	$-1 " 07$
Masi	"	-	$81^{\circ} 23^{\prime}$	406	$27^{\circ} 38^{\prime} 14^{\prime \prime} 79$	$25^{\prime \prime} \cdot 17$	-10'3 38
Dadaura	"	.	$81^{\circ} 43^{\prime}$	420	$27^{\circ} 43^{\prime} \quad 3 \prime \cdot 51$	18":33	-14".82
Manichauk	..	-	$82^{\circ} 5^{\prime}$	360	$27^{\circ} 36^{\prime} 28^{\prime \prime} \cdot 91$	$48^{\prime \prime} 14$	$-19^{\prime \prime} \cdot 23$
Basadela	\cdots		$82^{\circ} 17^{\prime}$	366	$27^{\circ} 23^{\prime} 50^{\prime \prime} \cdot 71$	63 "'24	-12".53
Pathardi	"	.	$82^{\circ} 45^{\prime}$	320	$27^{\circ} 25^{\prime} 56^{\prime \prime} \cdot 11$	$74^{\prime \prime} \cdot 77$	$-18^{\prime \prime} \cdot 66$
Ghaus	"	.	$83^{\circ} 6^{\prime}$	296	$27^{\circ} 20^{\prime} 48^{\prime \prime} \cdot 34$	65".08	$-16^{\prime \prime} 74$

All the stations are situated on the plains of Oudh and it is improbable that any orographical correction within a radius of at least 10 miles will have to be applicd. The Himalayas are visible from the last 5 stations, Manichauk, the nearest to them," being about 18 miles distant.

The deflections deduced are in accordance with those found on the neighbouring meridional series, the Amua, the change of sign from $+^{\mathrm{ve}}$ to - ${ }^{\mathrm{re}}$ occurring at about latitude $27^{\circ} 21^{\prime}$ on the Amua ard at $27^{\circ} 15^{\prime}$ on the Karara Series.

The local maximum of southerly deflection at Sora would seem to indicate that gravity is in excess between this station and Pariaon.

The following table gives further details of the observations :-

TABLE II.

The micrometer value used was $69 \cdot 212$ per revolution and was determined from observations to 203 star couples.

During the recess an investigation was undertaken with a view to ascertąining whether the condition known as isostasy exists in India. The method followed was that which has been used in the United States by Mr. J. F. Hayford.

The investigation involved the computation of the deflection of the plumb line in the meridian caused by visible masses up to a distance of 2,564 miles from about 106 selected latitude stations; and for the same quantity in the prime vertical at 18 longitude stations.

To these deflections were then applied certain factors which gave the deflection which should be produced if isostatic compensation were complete down to a depth of 113 kilometers, which is the most probable depth Mr. Hayford obtained, as the result of his work in the United States. This gave what may be called the theoretical deflection of the plumb line based on certain assumptions as to the density of the earth as a whole, and of that of the crust. Having obtained the thenretical deflection it was compared with the actual one, or (A-G) for the station. The difference br:tween the two gives the unaccounted-for deflection. If isostasy
were complete down to the depth mentioned, and provided the assumed densities represent those which actually occur in nature, then the theoretical and actual deflection would be the same. The amount by which they differ would be a measure of the incompleteness of the isostatic state. But we are by no means certain that the assumed density ratio is correct; nor, indeed, that any one density is suitable for all places, or again that the density is uniformly distributed, as the formula assumes. These seem to me to be weaknesses inherent in all mathematical methods of treating puestions regarding the constitution of the earth's crust. We are attempting to apply invariable rules and methods to a subject where every variety of conditions may exist.

The formula for the deflection of the plumb line is the well-known one taken from Clarke's Gecdesy :- $\mathrm{D}=12^{\prime \prime} 44 \frac{\delta}{\Delta} h\left(\operatorname{Sin} a^{1}-\operatorname{Sin} a_{1}\right) \log _{c} \frac{r^{\prime \prime}}{r_{1}}$. Where $\frac{\delta}{\Delta}$ is the ratio of the surface density to the mean density of the earth, h the mean height of the compartment above sea level, a^{1} and a_{1} the azimuths of the radial lines, and r^{1} and r_{1} the radii of the circles.

In order to simplify an otherwise very laborious com putation Mr. Hayford adopt ${ }^{-}$ ed the following values: $-\frac{\delta}{\Delta}=\frac{2 \cdot 87}{6.570}=\frac{1}{205},\left(\operatorname{Sin} a^{1}-\operatorname{Sin} a_{1}\right)=0.25, \frac{r_{1}}{r_{1}}=1.426$. When these are substituted in the above formula, the deflection preduced at the station by any compartment whose mean height is h becomes $=0.0001000(h$ in feet) ; from this it follows that every hundred feet of height of compartment, above mean sea level, prcduces a deflection of $0^{\prime \prime} .01$ at the station under consideration.

The boundaries of compartments were defined by lines drawn, to the proper scale, on sheets of transparent celluloid which were placed on the "map. The mean height was then estimated, as near as it could be, from the information given on the map. In many cases the available information was very meagre, and the resultant mean beight was consequently involved in some doubt. This, however, is due to a deficiency inherent in the available maps, and not in the system.

B.-PENDULUM OPERAZIONS.

By Captain H. M. Cowie, R.E.

No. 14 (Late 23) Party.

The latitude observations in Central India had irdicated the existence of a belt of relatively high density in the

Coptain H. McC Cowie, R.E. Mr. Hanuman Prasad. 3 Computers, etc.
earth's crust. The limits of this belt, so far as could be gathered from the latitude results, ran on the north from about Ujjain through Cawnpore, eastwar's, and in the south from Dhulia in Khandesh to Bilaspur and eastwards.

The gravity operations of the last two seasons have had in view the more precise location of the limits of the areas of high and low density, the collection of data, from which it was hoped conclusions might be drawn as to the nature of this belt of high density, whether it corresponded to any extent to the topographical configuzation, whether it was, that is to say, visible, or whether it lay. concealed below the surface.

The operations of 1908-09 dealt with the south-western portion of the belt, lying in the area Ujjain, Dhulia, Amraoti, Hoshangabad. In 1909-10 the region lying to the east of this was worked over, the stations being distributed over,
the districts of Saugor, Seoni, Bilaspur, Sultanpur, approximately between latitudes 21° and 26° and longitudes 79° and 83°.

The stations visited were:-

TABLE 1.

Saugor is situated on an extensive plateau, tolerably level, though broken here and there by low hills, distributed singly and in ranges. The country is mostly covered by trap beds, but in places are found inlying hills of Vindhyan formations. The general level is about 1,700 feet above sea with hills running up to some 300 or 400 feet higher. Damoh and Katni lie further to the east in country of much the same topographical aspect as that round Saugor though lower lying and less broken by hills. These two stations lie on Vindhyan beds, the trap in this region extending only a short distance east of Saugor. Umaria and Pendra are further to the south-east, just to the east of the Central Indian trap overflows. The former, on Vindhyan formations, in country very irregular in surface features and broken up, is over the Rewa State coal-fields. The latter in higher lying, rolling country, is near the high ground dividing the drainage areas of the Ganges, the Nerbudda and the Mahanadi. A short distance to the west lies the peak of Amarkantak, marking the eastern limit of the great trap overflow. Bilaspur and Raipur are both in plains to the south of the east Satpura highlands. Amgaon, to the north-west of Raipur, is on the southern fringe of the Satpuras, in generally open country interspersed with rocky outcrops. Seoni lies on the Satpura plateau which here forms a small upland surrounded by hills. Those to the south are generally peaked and much indented in outline, while those to the north, being trap, are usually flattened at the top or of straighter outline. Jubbulpore lies on a plain on the northern slopes of the Satpura high ground, in the Nerbudda valley. This plain is broken and diversified all round the horizon by single hills and small ranges, those to the south belonging generally to the trappean area of Central India. Maihar lies in the tract between the Gangetic plains and the Central Indian highland. The country slopes gently from south-west to north-east, the plain being broken occasionally by rocky hills.

At each of these stations a building with a pucca floor was available for the pendulum observatory. At some places however the rooms were small, and at others indifferently weatherproof, making the controlling of the temperature a matter of difficulty. At Umaria and Seoni the rooms were small, and at Saugor, Pendra and Seoni the protection against the sun's rays was not as perfect
as could have been wished. In Table 2 are given the temperature variations during the hours of observations.

TABLE 2.

Determinations of the flexure of the pendulum support were made, as usual, both before and after the series of observations at each station. The values of the correction ranged from 36.5 to $54 \cdot 7$. They are given in Table 3, and call for no special remark.

TABLE 3.

Station.	Date.	Observed Hexure.	Adopted mean.	Station.	Date.	Observed flexure.	Adopted mean.
Dehra Dun	November 8	$\begin{aligned} & 38 \cdot 6 \\ & 37 \cdot 8 \end{aligned}$	$38 \cdot 2$	Bilaspur	$\begin{array}{r} \text { January } \\ 10 \\ 14 \\ 15 \end{array}$	$\begin{aligned} & 48 \cdot 2 \\ & 45 \cdot 4 \\ & 46 \cdot 2 \end{aligned}$	
							46.8
Saugor	November 26 30	$\begin{aligned} & 50 \cdot 8 \\ & 51 \cdot 1 \end{aligned}$	50.9	Amgaon .	January 31 February 4		
						$46 \cdot 0$	
Damoh	December $\begin{aligned} & 4 \\ & \\ & \\ & 9\end{aligned}$					$44 \cdot 4$	$45 \cdot 4$
		$\begin{aligned} & 42 \cdot 7 \\ & 42 \cdot 3 \end{aligned}$	$42 \cdot 5$	Seoni	February 13		
						$45 \cdot 0$ $45 \cdot 0$	$45 \cdot 0$
Katni	December $\begin{array}{r}12 \\ 15\end{array}$	$\begin{aligned} & 54 \cdot 9 \\ & 54 \cdot 6 \end{aligned}$	$54 \cdot 7$	Jubbulpore	$\begin{aligned} & \text { February } 25 \\ & \text { March } 2 \end{aligned}$		450
						42.0	
Umaria		$\begin{aligned} & 37 \cdot 4 \\ & 38 \cdot 6 \end{aligned}$				41.5	$41 \cdot 8$
	December $\begin{array}{r}19 \\ 23\end{array}$		38.0	Maihar	$\begin{array}{ll}\text { March } & 15 \\ & 19\end{array}$		
						$46 \cdot 4$	
Pendra	$\begin{array}{lr}\text { December } & 30 \\ \text { January } & 4\end{array}$	$\begin{aligned} & 64 \cdot 3 \\ & 49 \cdot 8 \end{aligned}$	52.1	Allahabad		$45 \cdot 9$	$46 \cdot 2$
					$\begin{array}{ll}\text { March } \\ & 25 \\ & 31\end{array}$	$44 \cdot 3$,
						45.5	44.8
Raipur*	January 20 24	$\begin{aligned} & 39 \cdot 3 \\ & 38 \cdot 8 \end{aligned}$	$39 \cdot 1$	Dehra Dun	April 20	38.2	
					April	$34 \cdot 2$	36.5

The elock rate was determined by Mr. Hanuman Prasad, using the Bent Transit Instrument by Messrs. Troughton and Simms. The mean p. e. of a clock rate determined from observations on two successive nights was $\pm 0^{s .014}$ and the mean p. e. of the rate derived from observations to one star on two successive nights was $\pm 0^{s} 051$.

[^1]In Table 4 are given the times of vibration of the four pendulums at Delra Dun in November 1909 and in April 1910. The mean time of vibration was adopted for the reduction of the observations during the season.

TABLE 4.
Times of vibration of the four pendulums at Dehra Dun.

Date.	137	138	13)	14)	Mean.
1909					
Nov. 8-9	$0 \cdot 5072515$	$0^{3} 5071953$	0-5071559	0.5070347	0'5072476
9-10	2546	4965	1575	0858	2486
10-11	2545	4975	1574	0869	24.9
11-12	2549	4980	1566	0855	2488
Means	0.5072546	$0 \cdot 5074968$	$0^{2} 5071569$	$0 \cdot 5070857$	$0 \cdot 5072485$
$\begin{array}{cc} \\ \text { Apl. } & 1910 \\ 20-21\end{array}$	$0 \cdot 5072587$	0־5074972	0:5071578	$0 \cdot 5070843$	$0 \cdot 5072495$
Apl. 21-22	2574	. 967	1588	0864	- 2498
22-23	2563	4974	1577	0861	2494
Means	$0 \cdot 5072575$	$0 \cdot 5074971$	0-5071581	$0 \cdot 5070856$	0.5072496
General means adopted for season.	$0 \cdot 5072561$	$0 \cdot 5074969$	0:5071575	$0^{5} 5070857$	0:5072491
Differences, Apl.-Nov.	+29	+3	+12	-1	+11

In the narrative report for 1908-09 attention was drawn to the gradual change which has been taking place in the mean pendulum since the commencement of operations in January 1904, the time of vibration slowly getting shorter. This change has been still operative during the pericd between the beginning of 1909 and the beginning of 1910. The mean time of vibration of the mean pendulum during the season $1908-09$ was $0^{6} 5072497$.

In Table 5 are shown the times of vibration of the mean pendulum at each of the stations visited, the differences from the time of vibration at Dehra Dun and the local values of g deduced therefrom. The adopted value of g at Dehra Dun, upon which the station values are bascd, is 979.063 dynes. This value was determined in the beginning of 1904 and is based on comparative observations made at Kew and Dehra Dun.

The mean p . e. of the time of vibration of the mean pendulum, as computed from the differences between individual values of this quantity and the station mean, is $\pm 1^{s} \cdot 72 \times 10^{-7}$ which corresponds to about ± 0.0007 dynes,

TABLE 5.

Table 6 shows for each station the observed value of g ，the corrections for height and mass above sea level and the deduced value of $\mathrm{g}^{\prime \prime}$ 。at sea level． γ_{0} is the thcoretical value of the same quantity derived from Helmert＇s 1884 formula．
$\gamma_{\circ}=978.000\left(1+0.005310 \sin ^{2} \phi\right)$ where ϕ is the latitude of the point of observ－ ation．

TABLE 6.

Station．		Observed value of g．		Mas．	$\mathrm{E}^{\prime \prime}$ 。	γ 。	Difference． $\mathbf{g}_{0}{ }_{0}-y_{0}$
		Dynes．	Dynes．	Dynes．	Dynes．	Dynes．	Dynes．
Saugor	－．	978.731	＋0．164	－0．061	978.834	978.850	－0．016
Damoli	．．	978.758	＋0．113	－0．042	978.829	978.848	－0．019
Katni	．	978.757	$+0.117$	－0．044	$978 \cdot 830$	$978 \cdot 848$	－0．018
Umaria	．	978.740	＋0．140	－0．050	$\bigcirc 778880$	978.827	＋0．003
Pendra	．	978.638	$+0.186$	－0．070	978.754	978.778	－0．024
Bilaspur	．	978.681	$+0.082$	－0．030	978.733	978.733	0.000
Raipur	．	978.612	＋0．093	-0.085	978.670	978.681	－0．011
Amgaon	．	978.614	$+0.096$	-0.036	$978 \cdot 674$	978.689	-0.015
Seoni	．	978.622	＋0．189	-0.067	978.744	978.735	＋0．009
Jubbulpore	．	978.719	$+0.137$	-0.051	$978 \cdot 806$	978.803	＋0．003
Maihar	．	978.784	＋0．108	－0．041	978.851	978.877	-0.026
Allahabad	\cdot	978.943	$+0.027$	－0．010	978．960	978.958	$+0.002$

Combining the values of $\mathrm{g}^{\prime \prime}{ }_{0}-\gamma_{0}$ with those of the previous year，determined in the tract to the west of that now considered，and arranging stations accord－ ing to height above sea level，we get the following series ：－

It is difficult to form any connection between these values of $\mathrm{g}^{\prime \prime}{ }_{0} \gamma_{0}$ and either the altitude or the geological formation of the country concerned．

Damob（－19），IJjain（－31），Mhow（－33），Saugor（－16），Pendra（－24）may all be described as situated in ligh－lying，rolling country；Mortakka（－6；
and Mukhtiara (-35) in a narrow valley and Jalgaon (+12) and Hoshangabad $(+4)$ in wider valleys. Asirgarh $(+17)$, Seoni $(+9)$ and Badnur $(+6)$ all lie over the main mass of the Satpuras ; Khandwa (+38), Jubbulpore $(+3)$, Shahpur (-5) on the lower Satpura plateaux ; and Katni (-18), Umaria (+3), Amgaon (-15) and Mailar (-26) are on the fringe of high ground. Bilaspur (0), Raipur (-11), Amraoti $(+10)$ and Ellichpur $(+9)$ lie in plains to the south of the Satpura mass.

The first group of stations in high-lying country certainly all show negative results. Four of these stations are situated north of the line of the Nerbudda. If we go south of the Nerbudda, we find a tendency to positive results at places also in high ground. Along the fringe of the highland and in plains to the south the values of $\mathrm{g}^{\prime \prime}{ }_{0}-\gamma_{0}$ are of an indeterminate character, rancing from +10 to - 24 .

In these two paragraphs the values of $\mathrm{g}^{\prime \prime}{ }_{0}-\gamma_{0}$ are given in braclets in units of the third decimal place of a dyne.

We find greater discordances when we turn to the main geological conditions. Ujjain (-31) and Mhow (-33) lie on trap beds, on the centre of a large overflow. . Khandwa $(+38)$ and Asirgarh $(+17)$ are also on the trap. Jalgaon $(+12)$, Badnur $(+6)$ and Seoni $(+9)$ are on the edge of the trap, as are Mortakka (-6), Saugor (-16) and Pendra (-24). Umaria $(+3)$ lies on Gondwana formations, just off the trap, so does Shahpur (-5). Jubbulpore (+3) is just off the trap, and Raipur (-11), Bilaspur (0) and Amgaon (-15) are on similar formations, though the latter are further from the trap.

A glance at the map, however, shows that there is a tendency for the results, positive and negative, to group themselves. Ujjain, Mhow, Mukhtiara and Mortakka all fall together forming a group of negative values. Saugor, Damoh, Katni and Maihar form a second, while Amgaon, Raipur and Pendra with 0 at Bilaspur constitute a third. Between the first two negative clusters and the third stretches a belt of positive values with one anomalous negative at Shahpur.

A further investigation of the results of the Pendulum observations in India has been commenced under the hypothesis, recently put forward by Mr. Hayford of the United States Coast and Geodetic Survey, that isostatic compensation exists within a probable depth of about 70 miles.

This investigation has been applied to 42 of the Pendulum stations, but so far the effect of the topography and its ccmpensation has only been computed up to a radius of 100 miles from each. These partial results do not show any greater accordance with the observed facts than does the uncompensated Bouguer reduction up to a similar radius: as, however, Mr. Hayford has shown that large effects may be preduced by regions lying outside the 100 mile radius, it is necessary to apply his system in its entirety, to at least a few selected stations, before we can form any definite idea of the applicability of his hypothesis to India.

V.-Magnetic Survey.

By Captain H. J. COUCHMaN, R.E.
No. 18 Pariy.

Cnptain R. H. Thomas, R.E., in charge up to 30th June 1910.

Caplain H. J. Couchman, R.E., in charge from 1st July 1910.

Lieutenant H. T. Morshead, R.E., from $\mathbf{8}$ h November 1909.
Mcestre. E. C. J. Bond, H. P. D. Morton, R. P. Ray, N. R. Muzumdar, R. B. Mathur. 19 Recorders, eto.

The present report deals with the work of the magnetic survey in 1909-10.
The report is divided into three main heads as follows :-
I. An account of the operations in the field and recess quarters, with a table of the preliminary values of the magnetic elements at field and repeat stations in 1909-10, and an index chart showing the positions of all stations of observation to date.

Note.-For convenience of reference the table and index chart are placed at the end of Part III.
II. A note on the working of the magnetic observatories in the survey year 1909-10.
III. Tables of results at the magnetic observatories in 1909.

I.-FIELD OPERATIONS AND RECESS WORK IN 1909-10. •

1. Work of the field detachments.
2. Work of tbe Imperlal officers.
3. Work doring recess.

Secular change in H. F.

 Diornal range in H. F. in South India. H. F. dase lineg and instrumental difterences in H. F.4. Valdes of distrididtion coefficients in 1909-10.
5. Programme of worr for 1910-11.
6. Results published in this report.
7. Work of the field de'achments.-The field season opened on October 25th 1909, and closed at the end of April 1910.

Four field detachments were employed during the year, under Messrs. Bond, Morton, Ray and R. B. Mathur. The first two re-obierved at nearly all the old field stations in the area lying between Lat. $16^{\circ}-19^{\circ}$ and Long. $73^{\circ}-78^{\circ}$ in ordes to investigate the abnormal secular change in H. F. found at four re-occupied field stations in this localily. Both observers also surveyed several small areas in detail, and Mr. Morton observed at three new stations on the Nagda-Muttra Railway, and took the usual comparative observations at the Alibag Observatory.

Mr. Ray's detachment was employed on detail survey in Central India, two or three areas being dealt with. That under Mr. R. B. Mathur worked along the outer ranges of the Himalaya from Naini Tal to Dharmsala.

Time did not admit of the magnetic survey of the Andaman and Nicobar Islands. It is, however, intended to do this during the coming field season.

The number of new stations of the preliminary survey occupied was 69, of detail survey stations 71 , while 100 old stations were re-occupied including those visited ly the Imperial officers.

The total number of stations of the preliminary survey to date is 1,330 .
2. Work of the Imperial officers.-Two Imperial officers were available through. out the jear.

The four observatories were inspected and comparative observations made at each. All the repeat stations were visited with the exception of Port Blair (time not being available for this), and in addition observations were made at several old field stations. Lieutenant Morshead, R.E., made half-hourly observations of H. F. at Tuticorin for 4 days in January 1910 to investigate the apparent rapid increase in diurnal variation in South India. These observations are referred to elsewhere in this report.
3. Work during recess.-The party was inspected by the Superintendent, Trigonometrical Surveys, during June 1910.

The computation of the previous season's field work and the reduction and tabulation of the base station results for 1909 have been completed.

No time has been available to investigate in detail the secular change found

> Secular change in H. l'. from the field stations re-occupied during the past field season, but a cursory inspec. . tion of the values found in the abnormal area mentioned in 1 above seems to show that the agreement between the values at the 4 field stations previously occupied is a coincidence. These values were -54γ and -58γ at Kirkee and Dhond and -34γ and -31γ at Kolhapur and Miraj, and it seemed that in this area the horizontal force was decreasing rapidly. This has not been borne out by the detailed examination of the area. Positive and negative values of secular change are equally common and of amounts varying from 0 to 100γ. The reason seems to be that owing to a lack of sufficient details it is often impossible to identify the old site within several feet. The whole country is composed of Deccan trap,-a magnetic rock, which often occurs on the surface,-and a change of 10 feet in the position of the station may alter the value of H. F. by 100 or 200γ. The values originally found are thus not comparable with the later ones and the secular change cannot be deduced with any degree of accuracy.

The remedy is, of course, to mark certain selected field stations permanently, and this will be done during the ensuing field season. This procedure was adopted for the repeat stations, and though in a few cases the marks have disappeared, it is significant that the values of secular change in H. F. found from them show a progressive and fairly regular change over the whole of India, though owing to the variation in secular change being large (-40γ in Quetta to $+40 \gamma$ in South Burma) the number of repeat stations is insufficient and it is essential to obtain further values.

In Part I, page 7, of last year's narrative report mention was made of the Viurnal range in H. F. in South India. intention to take half-hourly observations of H. F. at Tuticorin to determine whether the increas: in diurnal range was more rapid in low magnetic latitudes than elsewhere.

The observations at Trichinopoly made in January 1909 showed that the rauge there was about 8γ less than in Kodaikanal, and this difference was greater than would be expected.

In January 1910, therefore, Lieutenant Morshead, R.E., made half-hourly observations from 8 A.m. to 4 р.m. on 4 days at Tuticorin, Lat. $8^{\prime \prime} 48^{\prime}$ and obtained a diurnal range from 8 a.m. (minimum) to 11 A.m. (maximum) of 48γ. The
range between the same hours of the same 4 days at Kodaikanal (Lat. $10^{\circ} 14^{\prime}$) was 43%. It seems fairly clear that Kedaikanal is not abnormal, and also that though the diurnal range does probably increase more rapidly in South India, the assumed linear relation between this range and latitude is sufficiently correct.

During practically the whole of the recess season, the Imperial officers have been engaged on the investigation of the instru-
H. F. base lines and instrumental differences in H. F.
mental differences in H. F. of the field and observatory magnetometers from the survey standard at Dehra Dun.

As it was thought that the changes in these differences as published in the narrative report of 1907-08 might be eliminated by using the se:ond distribution coefficient, or " Q term," in the expression $\left(1+\frac{P}{1^{2}}+\frac{Q}{r^{4}}+\ldots.\right)$, this term was computed for all magnets by the formulæ given in last year's report. With these new distribution coefficients the base lines of the magnetographs were recomputed and also the values of H . F. as obtained with the different magnetometers at the times of comparison.

The initial difficulty was to decide when, if ever, changes in P and Q occurred.
Such changes were usually looked for when there was an apparent change in m_{o}, in order to determine whether this change was real, or could be eliminated by using different values of P and Q before and after the apparent change. In practicaily no case could an assumed change in the distribution coefficient be substantiated, for a sudden change in the base line would be found which cguld be avoided by keeping P and Q constant and assuming a real change in m_{0}.

Some evidence of real instrumental change has, however, been found when a large drop, of 2 or 3 C . G. S. units, in m_{o} has occurred, and though this change has not been eliminated by using new values of P ard Q, such new values have occasionally been taken and the change in the base line corrected for. An actual instance will elucidate this point. In May 1908 the moment of the Dehra Dun standard magnet dropped from $911 \cdot 2$ C. G. S. to $894 \cdot 2$ C. G. S.; the value of the distribution coefficient used before the change was $\bar{\Gamma} 99315$ while the mean of subsequent observations was $\mathbb{T} 99332$. If no real instrumental change had occurred at this point this change of P and Q would have produced a fall of 6γ in the base line : actually, however, the recomputcd base line rose suddenly by about 18γ and the comparisons of the field instruments with the standard showed a similar change, as the following table will show :-

Magnet. (1)	October 1907. (2)	May 1008. (3)	Chango (3)-(2).	,
17-2	-68	-53	+15	
17-3	$\bullet 23$	+3	+ 26	
17-5,	-23	-2	$+21$	
17-6	-28	4	+24	
			Mean +20	

[^2]This shows that the apparent rise in the base line is due to a real change in the magnetometer magnet and not merely in the magnetograph, and it is therefore necessary to correct values of H. F. subsequent to May 1908 by the amount of this instrumental change. It appears, however, that this change is not a permanent one, for the instrumental comparisons in October 1908 tend to show that the standard magnet had recovered itself. These comparisons are shown below :-

Magnot. (1)	May 1908. (2)	October 1908. (3)	Clange (3)-(2).
17-2	-53	-79	-26
$17-3$			
$17-5$	+3	-22	-25
$17-6$	-2	-31	-29
\ldots	-4		-32

It will be noticed that the mean change of No. 17 from October 1907 to October 1908 as shown by the comparisons is -6γ, precisely the same amount as that produced by the substitution of a new distribution corfficient. It would thus appear-

- (1) that no real change of P and Q occurred in May 1908 ;
(2) that an instrumental change of about 25γ took place when the moment of No. 17 fell suddenly in May 1908 followed by a recovery which was complete before October 1908.
Evidence of the truth of (2) is found in the comparisons of the Kodaikanal magnet No. 16 with No. 17 ; these showed that the difference 17-16 in December 1907 was -28γ and in January $1909-31 \gamma$. Thus indicating that if any change in No. 17 occurred in May 1908 the magnet had recovered itself by January 1909.

Other instances of instrumental change taking place when the moment falls suddenly occur at Barrackpore in November 1906 and at Kodaikanal in May 1909. The latter is too recent to admit of any evidence of subsequent recovery, but in Barrackpore the change seems to have been permanent and of about $+20 \gamma$ in magnitude. In the narrative report of 1907-08, page 14, it will be - noticed that the H. F. in Barrackpore rose 20γ between December 1906 and January 1907. This rise occurred at no other observatory and always seemed doubtful, but it is now seen to be due to an instrumental change in the magnet and can be confidently colrected for.

Apart from these sudden changes coincident with a drop in moment there seems little evidence that P and Q have altered appreciably in any of the observatory magnets. The case of the field magnets is more difficult, as we have no such good test of their invariability as is given by the base lines in the case of the observatory magnets.
The practice has been to compute the distribution coefficient from 3 or 4 montbs' observations, and when this value differs largely from the previous mean, it has been used in a preliminary computation of m and H. Such cases are rare and in view of the apparent constancy of the observatory magnets it seems probable that these changes are not real. The differences of all magnets from the standard have been recomputed, but the values obtained cannot as yet be considered final.

It is believed, however, that the values of the base lines now obtained are correct as these have been subjected to a rigid examination by plotting the mean values of H. F. in ench month, obtained from the 'quiet' days, and comparing the results of the different observatories. The agreement is quite satisfactory and the annual variation in force shows a great similarity.

These base lines show distinct signs of annual variation, especially in the case of Barrackpore. In each year there is a fall in November and December followed by a rise in February and March, and it is unfortunate that these rapid changes should occur during the field season when it is important to know the value of the base line on each day in which a field observation has been made, in order to correct for disturbance.

During this general recomputation of base lines and instrumental differences several cases of personal error have been noticed. The clearest of these was at Kodaikanal in 1908 when the permanent observer proceeded on three months' leave and another carried out his duties during this period. Immediately after this change of observers, the moment of the magnet dropped 0.46 C . G. S. units and the base line 19γ, both returning to their previous values when the permanent observer resumed his duties. To ensure continuity of record it is, of course, necessary to allow for this personal error though it is difficult to find a reason. for it. Similar cases have occurred when the field instruments have changed hands (in one case a difference of nearly $30 y$ was found), but these can be easily allowed for in the instrumental differences.
4. Values of distribution coefficients in 1909-10.—The table below gives the values of $\mathrm{P}_{1.2}$ and $\mathrm{P}_{2.3}$ for the field magnets in the season 1909-10. No. 10S is the ordinary short magnet of No. 10 magnetometer bearing the same proportion to the deflecting magnet $\frac{1}{1 \times 0}$ as do the other deflected magnets, while 10 K is somewhat longer being $\frac{1}{123}$ of the long magnet. The distribution factor ($1-\frac{\mathrm{P}_{\mathrm{P}_{2}}}{\mathrm{r}^{2}}$) has been used to obtain the values of H given in the abstract at the end of this report, and the correction on account of the Q term to these and all other published values of H will be made subsequently.

It has been mentioned in a previous report that the mean value of force on one quiet day often differs largely from that of auother, and consequently where these days are not the same in any month for all observatories the mean values of force are not comparable, and there would be difficulty in deducing the annual variation. This is now being remedied. The selection of "quiet days" common to all the observatories has been made and these are now being measured and tabulated, but owing to missing or defective traces it has been most difficult to find 5 suitable quiet days common to all observatories, and in sone cases 4 (aid cccasionally 3) days are being used.
6. Results published in the report.-A table showing the approximate values (uncorrected) of the magnetic elements at the field and repeat stations is appended, together with an index chart showing all stations of observation and areas surveyed in detail to date. The tabulation of the results obtained at the four observatories are published for 1909.
II.-The Magnetic Observatories in 1:09-10.
A.-Delifa Den Observatory.
B.--Barrackpore "
C.-Toungoo "
D.-Kodimkanal ",
A.-Delira Don Obefrintory.

1. Generai hemariss on working.
2. Meay vades of H. F. and decienhtion constants.
3. Mein values of rase lines.
4. Mean scalf valde and tempratdee range.
5. Mean vontily values of macisetic element in 1969 and sfoculat change, 1908-19.
6. General remarks on working.-The observatory remained in charge of Surveyor K. K. Dutta.

The magnetographs have given good results throughout the year. The H. F. instrument has been opened twice to remedy small defects in November 1909 and June 1910. Some slight interference was observed in the declination instrument in December; this was removed by giving the magnet a large deflection.
'The V. F. magnetograph had, as usual, to be opened several times for cleaning and balancing. On one of these occasions some minute insects found their way inside and great difficulty was experienced in removing them.

The underground room *was kept fairly dry in spite of the heavy rains. In the middle of August, the surrounding passage was flooded to a depth of 3 feet, but the water was kept out of the magnetograph room by raising the barrier at the door.

The walls and floor are now to be plastered with Fortland cement to prevent the percolation of subsoil water, and it is hoped that this will prove successful.
2. Mean values of II. F. and reclination constants.-The following table gives the monthly mean values of the magnetic collimation, the distribution coefficients P_{12} and $P_{2 \cdot 3}$, and the moment $m_{\text {。 }}$ of the magnet No. 17 during

Mcan ralues of the constants of the magnetometer No. 17 in 1909.

Montbs.	Dectil. mation constants.	H. F. CONSTANTS.				Mean M.	M. accepted.	Remares.
		, Mean values of P's.						
	Mean masnetic collima. tion.	$\mathrm{P}_{1,2}$	P2.3					
January	-9': $32^{\prime \prime}$	7-14	$7 \cdot 88$			804.32	894-67	
February	: 20 *	$7 \cdot 12$	7.71			894.46	$894 \cdot 57$	
March .	32*	7.21	$8 \cdot 26$			$\left\{\begin{array}{l}894 \cdot 05 \\ \left\{\begin{array}{l}804 \cdot 56(1)\end{array}\right.\end{array}\right.$	894'57	(1) By chrono-
April .	: 31*	$7 \cdot 23$	$8 \cdot 17$			804.25	894.57	
May .	: $28{ }^{*}$	$7 \cdot 21$	$8 \cdot 15$			803.94	$894 \cdot 57$	
June	: 29^{-}	7.29	8.06	号	\%	$894 \cdot 14$	894.57	
Juiy	$: 30^{*}$	720	8.35	?	号	804.15	$89+57$	
August	: 30°	7.31	8.09	$\stackrel{\rightharpoonup}{0}$	$\begin{aligned} & 0 \\ & 8 \\ & \infty \\ & \hline \end{aligned}$	$\left\{\begin{array}{ll}894 \cdot 44 \\ 804 \cdot 58(1)\end{array}\right\}$	$894 \cdot 57$	
September	:30"	7.25	8.03			$\left\{\begin{array}{l} 894 \cdot 41 \\ 894 \cdot 58(1) \end{array}\right.$	804-57	
October	$: 30 *$	$7 \cdot 26$	7.96			394.29	894-57	
November	: 30"	$7 \cdot 25$	7-93			$\left\{\begin{array}{c}893 \cdot 83(2) \\ 893 \cdot 41(3)\end{array}\right.$	$\begin{gathered} 893-83(2) \\ 893 \cdot+1(3) \end{gathered}$	(2) To 12th. (3) 15 th to 30 th.
December	: $27{ }^{\prime \prime}$	7.14	$8 \cdot 17$			593.30	893.30	

3. Mean values of base lines.-The table below gives the mean values of the H. F. and declination base lines actually used to obtain the values of force, etc., given in the tables at the end of this report. These are not the latest values (using the Q term) found during this recess. The V. F. base lines are not shown, as there have been frequent changes.

The abstract of the base lins value of magnetoqraph at Dehra Dun Observatory in 1909.

Monthe.			Declination.		Remaris.	Horizontal Force.		Remares.
			Mean value of base line.	Base line ac-cepted-		Menn value of base line.	Buse line ac. cepted-	
Jitnuary .	.	.	1° : $41^{\prime} \cdot 0$	-•	.	-33032	-	
February	.	-	40'9	.	.	-33032	\cdots	
March .	.		$40^{\prime} \cdot 9$	-	.	-33034	.	
April .	-	. .	$40 \cdot 9$.	\ldots	-33030	-•	
May -	\cdots		$40^{\prime} 5$	-	\ldots	-33034	.	
Juno	$40^{\prime} \cdot 7$.	\cdots	. 33035	-	
July .	.	- .	$40^{*} \cdot 3$	\cdots	.	-33032	-	
August	-		$40 \cdot 3$.	To 12th .	-33034	-•	To 11th.
September	r	- .	$\begin{aligned} & 13 \cdot 1 \\ & 43^{\prime} \cdot 5 \end{aligned}$	-•	From 14th To 2encl.	$\left\{\begin{array}{l}3.1192 \\ .37 .194 \\ .301080\end{array}\right.$	\cdots	14th to $18 t h$. 17th to 22nd. 2ind to 30th.
Oclober	$43^{\prime} 9$	-	From 2eith	$\left\{\begin{array}{l}.33075 \\ .33067\end{array}\right.$	\cdots	1st to 13th. 16 th to 30 th.
Novomber	r	- .	$44^{\prime} 0$	\cdots	\cdots	$\left\{\begin{array}{l}.33075 \\ .13110 \\ .34134 \\ .32371\end{array}\right.$	\cdots \cdots \cdots	Lat to 12th. 1.ith to Inth. Ith to tith. 27 h to 29 th .
December	-	-	$41 \cdot 2$	-•	.	-33022	.	30th Nov. to end.

4. Mean scale value and temperature range.-The mean scale value of the H . F. magnetograph up to August 1909 was $4 \cdot 11 \gamma$ for an ordinate of $0.04^{\prime \prime}$. After the re-erection in September the scale value fell to 4.06γ and remained so up to November 21st, when, the instrument being opened and the torsion head turned, the value rose to $4 \cdot 10$. The mean temperature of the H. F. magnetograph was $27^{\circ} 25 \mathrm{C}$. with a maximum of $27^{\circ} \cdot 43$ in July and a minimum of $26^{\circ} \cdot 00$ in February.

The scale value of the V. F. instrument varied from 439 to $5 \cdot 15$. The mean temperature was $80^{\circ} 32 \mathrm{~F}$., the maximum $80^{\circ} 87$ occurring in July and the minimum $79^{\circ} 46$ in February.

The temperatures of reduction are $27^{\circ} \mathrm{C}$. and $81^{\circ} \mathrm{F}$. respectively.
5. Mean monthly values and secular change.-The following table gives the mean monthly values of the magnetic element in 1909 with the secular change for 1908-09 deduced therefrom. It will be observed that the great magnetic storm of September 25th, 1909, lowered the value of H. F. greatly, this being the usual result.

Secular change at Dehra Dun, 1008-09.

B.-Barrackiore Observatory

1. General Rrmaris on Workine.
2. Mean valdes of H. F. and declination constants.
3. Mean values of base lines.
4. Mean soale value and temperature range.
5. Menn monthly valdes of magnetic elements in 1909 and seculjr chanari, 1908.09.
6. General remarks on working.--The observatory remained in charge of K. N. Mukerji throughout the year.

The V. F. instrument had to be opened several times for cleaning and balancing, but otherwise the instruments worked satisfactorily.
2. Mean values of constants.-The following table gives the monthly mean values of the magnetic collimation, the distribution coefficients $P_{1.2}$ and $P_{2.3}$ and the mowent m_{o} of the magnet No. 20 during 1909 :-

Mean values of the constanti of the mugnetometer No. 29 in 1909.

3. Mean values of base lines.-The table below gives the mean monthly base lines of the H. F. and declination magnetographs actually used. Those of the V. F. are not shown.

The abstract of base line value of magnetograph at Barrackpore Observatory in 1909.

Months.	Declination.			Hobizontal Fobce.		
	Mean value of base line.	$\begin{gathered} \text { Base } \\ \text { line } \\ \text { accepted. } \end{gathered}$	Remares.	Mean value of bace line.	Bace line accepted.	Remaris,
January .	$0^{\circ}: 4^{\prime} \cdot 5$	$-0^{\circ}: 4^{\prime} 6$	-	$\cdot 37073$	$\cdot 37073$	The moment of the
February .	$4^{\prime} \cdot 7$	$4^{\prime} \cdot 6$	-•	57	69	to 940.81 on 19 th January, so the value of
March .	$4^{\prime} \cdot 7$	$4^{\prime} \cdot 6$.	65	65	February was uncertain. The base, line
April .	$4^{\prime} \cdot 5$	$4^{\prime} \cdot 6$.	68	68	for that month is therefore rejected.
May . .	$4^{\prime} \cdot 7$	$4^{\prime} \cdot 6$	-•	74,	$\begin{array}{r} 74 \\ a \end{array}$	$a=$ uniform change of base line.
June . .	$4^{\prime} \cdot 6$	$4^{\prime} \cdot 6$	-	69	69	baso liae.
July .	$4^{\prime} 6$	$4^{\prime} \cdot 6$	-•	71	71	
August	$4^{\prime} \cdot 6$	$4^{\prime} \cdot 8$	-•	68	68	
September	$4^{\prime} \cdot 7$	$4^{\prime} \cdot 6$.	70	70	
October	$4^{\prime} \cdot 7$	$4^{\prime} \cdot 6$	-•	66	66	
November	$4^{\prime} \cdot 7$	$4^{\prime} \cdot 6$.	58	58	
December		$44^{\prime} \cdot 9$..	60	60	,

4. Mean scale values and temperature range.-The mean scale values of the H. F. and V. F. instruments were 4.86γ and 4.53γ respectively, the limiting values being 4.85 and 4.89 in the first case and 4.50 and 4.56 in the second.

The mean temperatures of the H. F. and V. F. instruments were $31^{\circ} 60 \mathrm{C}$. and $89^{\circ} .26 \mathrm{~F}$. respectively with maxima of $33^{\circ} \cdot 21 \mathrm{C}$. and $92^{\circ} 03 \mathrm{~F}$. in December and minima of $28^{\circ} .83 \mathrm{C}$. and $84^{\circ} 08 \mathrm{~F}$. in January.

The temperatures of reduction are $31^{\circ} \mathrm{C}$ and $89^{\circ} \mathrm{F}$.
5. Mean monthly values and secular change.-The following table gives the mean monthly values of the magnetic elements in 1909 with the secular change for 1908-09 deduced therefrom.

Secular change at Barrackpore in 1908-09.

... Sonthe.	Horizontal Force -37000 C. G.S. +			$\begin{gathered} \text { DECLination } \\ \text { E. } 0^{\prime}+ \end{gathered}$			$\underset{\text { N. } 30^{\circ}}{\text { DIP }}$			Yertical Force . 22000 C. G. S.			Reyares.
	$\begin{aligned} & \text { Values, } \\ & 1908 . \end{aligned}$	$\begin{aligned} & \text { Values, } \\ & 1900 . \end{aligned}$	Secular change, 1008-09.	$\begin{gathered} \text { Valnes, } \\ 1908 . \end{gathered}$	Values, 1909.	Secular change, 1908-00.	Values, 1908.	Values, 1009.	Sccular change. 1908-09	$\begin{aligned} & \text { Values, } \\ & \text { 1908. } \end{aligned}$	$\begin{aligned} & \text { Value, } \\ & 1009 \text {. } \end{aligned}$	Secular clange, 1908.09.	
	γ	γ	γ	'	,	,	,	,	,	c.g.s.	C.G.S.	c.G.8.	
Janubry	301	301	\cdots	67-6	62.0	-4.7	32.0	30-8	+ $4 \cdot 8$.	71	+ 71	The values io 1009 3if weans of $\$$ daya ooly.
February .	305	307	+2	07.4	62's	$4 \cdot 0$	33.0	$30 \cdot 6$	$3 \cdot 6$	17	72	55	Ditto.
March	306	205	-11	88.8	62.2	$4 \cdot 6$	$32 \cdot 8$	37-5	4-6	18	78	00	
April .	293	315	+22	80.4	61.6	4.8	$34 \cdot 6$	37.0	$2 \cdot 4$	34	82	48	
May .	401	308	+8	60.4	$61 \cdot 1$	$5 \cdot 3$	$34 \cdot 2$	37.8	3-4	34	88	54	
June	300	310	+10	65.7	60-9	4.8	$34 \cdot 5$	38.1	3.6	38	90	58	
7uly	301	308	+7	05.0	00.6	$5 \cdot 0$	$34 \cdot 3$	38.7	$4 \cdot 4$	34	103	69	
August	294	303	$+0$	65.1	00.2	4.9	$35 \cdot 1$	80.1	4.0	42	100	64	
September	275	291	+10	04.8	59.8	5.0	$313 \cdot 1$	$40 \cdot 4$	$4 \cdot 3$	45	118	73	
Oclober .	294	201	-33	64.3	50-7	4.6	$35 \cdot 8$	42.0	0.2	63	123	70	Dittor
November.	298	203	-6	03.8	60.2	4-6	$30 \cdot 4$	$40 \cdot 3$	$3 \cdot 0$	64	117	59	
Derember	908	302	-6	83.0	69.2	$5 \cdot 4$	$36 \cdot 3$	40.8	4.5	68	130	02	
Means	298	300	+2	65-6	00.7	-4.0	$34 \cdot 9$	38.7	$+4.1$	37	00	+01	

C.-Toungoo Onservatomy.

1. General remarks on worifing.
2. Mean values of H. F. and declination constants.
3. Mean values of base lines.
4. Mean gcale valde and temperature range.
5. Mean monthly valueg of manetio elements in 1800 and sectlar chanar, 1808.00.
6. General remarks on working.-The observatory remained in charge of Shri Dhar throughout the year.

With the usual exception of the V. F. instrument the magnetographs gave good results throughout the year.
2. Mean values of H.F. and Declination Constants.-The following table gives the monthly mean values of the magnetic collimation and distribution roefficients $P_{1.8}$ and $P_{2.8}$ and the moment m_{0} of the magnet No. 19A during 1909

Mean value of the constants of the magnetometer No. 19 with magnet 19 A in 1979.

3. Mean values of base lines.-The table below gives the mean montlly base lines of the H. F. and declination magnetograpbs actually used. Those of the V. F. are no hown.

The observil values of the declination base line have varied considerably, but these changes do not appear to be real, for no sudden slips have been noticgd in the magnetograms when the base line has appeared to alter by 2^{\prime}. During the inspection of the observatory by the officer in charge it was noticed that the clamping screw of the wooden box was loose in its hold, and after this was tightened the base lines remained steady for some months. It appears therefore that the magnetometer was at fault, aud as, from the comparative observations in December 1908 and 1909, the base lines computed with No. 10 instrument showed, no appreciable change, a constant value has been assumed for the whole of 1909.

The magnetometer will be carefully examined when the observatory is next inspected.

The abstract of the base line value of the magnetograph at Toungoo in 1909.

Months.	Drchnation.	Horizontal Forch,		Rrmaris.
	Accepted baso line.	Observed base line with 19a.	Accepted base line reduced to 10.	
January .		. 38506	. 38485	
February	\pm	503	482	
March .	\%	501	480	
April .	-	498	477	
May .	\%	496	475	$a=$ base line assumed to be
June .	\pm	495	\boldsymbol{a}	changing uniformly.
July .	F	488	467	
August .	\bigcirc	488	467	
September	$0 \cdot$	488	a	
October .	I	481	460	
November		481	460	
December		481	460	

4. Mean scale value and temperature range.-The mean scale value of the H. F. instrument was 5.41γ with limiting values of $5 \cdot 39$ and 5.43 . That of the V.F. varied from 5. 19 to $5 \cdot 40$.

The mean temperatures were $89^{\circ} 08 \mathrm{~F}$. and $88^{\circ} 69 \mathrm{~F}$. for the H. F. and V. F. magnetographs respectively with maxima of $89^{\circ} \cdot 36$ and $89^{\circ} \cdot 07$ in April and minima of $89^{\circ} 00$ and $88^{\circ} 28$ in December.

The temperature of reduction is $89^{\circ} \mathrm{F}$. in both cases.
5. Mean monthly values and secular change.-The following table gives the mean monthly values of the magnetic elements in 1909 with the secular change for 1908-09 deduced therefrom :-

Secular change at Toungoo in 1908-09.

Months.	Horizontal Force ,38000 C.G.S. +			Dedlination$\text { E. } 0^{\circ}+$			$\mathrm{N}_{22^{9}}^{\operatorname{DIP}}+$			Vermeal Forod$-10000 \text { C. G. S. }+$			Rryagis.
	Folues, 1908.	$\begin{aligned} & \text { Valueg, } \\ & 1000 . \end{aligned}$	Secular change, $1908-09$.	Vnlues, 1808.	Valucs, 1909.	Secular rhange, 1008-09.	Values, 1008.	Values, 1009.	Secular change, 1808.0日.	$\begin{aligned} & \text { Velues, } \\ & \text { 1008. } \end{aligned}$	Volucs, 1800.	Secular change, 1008-00	
	7	${ }^{\gamma}$	$\boldsymbol{\gamma}$	*	,	,	*	,	-	γ	γ	γ	
January -	766	747	-10	88.7	32.2	-4.6	$61 \cdot 1$	61.0	-0.1	480	460	-9	The valines in 1000 ut means of 4 deys ondy.
Februnty .	767	769	8	88.3	81.9	4.4	00.8	60.5	0.3	488	458	8	Ditto.
March .	760	754	26	35.8	81.5	4.3	01.4	61.2	0.2	475	405	10	
April	753	770	$+18$	$35 \cdot 1$	31.1	4.0	03.1	00.0	2.5	403	407	20	
May	763	774	11	95.5	. $80 \cdot 6$	6-0	01.0	01.4	0.5	479	477	2	
Jone	762	777	15	84.5	$30 \cdot 4$	$4 \cdot 1$	01.8	61.7	$0 \cdot 1$	477	483	$+6$	
Paly .	700	777	11	84.2	$29 \cdot 8$	$4 \cdot 4$	81.7	01.0	0.7	477	472	-b	7
Augnat	762	780	18	$33 \cdot 8$	$20 \cdot 3$	$4 \cdot 3$	01.5	61.4	$0 \cdot 1$	473	478	+0	
September	748	760	18	33.5	28.8	$4 \cdot 7$	62.2	01.0	0.3	477	481	4	1
October	704	735	-20	$32 \cdot 9$	$28 \cdot 0$	4.3	62.7	03.0	$+0.3$	400	482	\square^{8}	
Hovember	703	774	+11	$32 \cdot 5$	$28 \cdot 1$	4.4	03.2	01.7	-1.6	400	481	-16	
December	704	770	+12	$32 \cdot 0$	27-6	$6 \cdot 1$	01.4	62.2	0.8	473	480	$+10$	1
Mcant	763	760	$+4$	34.4	30.0	-4.6	81.0	01.6	-0.0	470	476	-4	

D.-Kodateanal Observatoby.

1. Geineral remarks on working.
2. Mean values of H. F. and declination constants.
3. Mean valeeg of base lines.
4. Mean scale valud and temperatube range.
5. Mean monthly valdes of magnetio elements in 1909 and segolab obange, 1908-09.
6. General remarks on working.-The observatory remained in charge of Surveyor Ramaswami Iyengar throughout the year.

Thanks are due to the Director, Solar Physics Observatory, for his cordial assistance in all matters pertaining to the magnetic work.

The magnetographs worked satisfactorily, except that it was necessary to adjust the balance of the V. F. instrument on several occasions.
2. Mean values of H.F. and declination constants.-The following table gives the monthly mean values of the magnetic collimation, the distribution coefficients $P_{1.2}$ and $P_{2.3}$ and the moment m_{0} of the magnet No. 16 during 1909 :-

Mean value of the constants of the magnetometer 16 in 1909.

3. Mean values of base lines.-The table below gives the mean monthly base lines of the H. F. and declination magnetographs actually used. Those of the V. F. are nut shown.

The abstract of the base line value of the magnetograph it Kodaikanal in 1909.

Monthe.	Declination.			Horizontal Fonce.		
		Accepted	Remaris.	$\begin{gathered} \text { Mane of of } \\ \text { balue } \\ \text { bine } \end{gathered}$	Accented base linc.	Rrmabsg.
January	$1^{1}: 32^{\prime} \cdot 8$.	$\cdot 36949$	36049	$n=$ by interpolatic.
February	32.0		.	38	a	
March	32.8		.	42	${ }^{\circ}$	
April	$32 \cdot 7$	免	.	42	a	
May .	$32 \cdot 8$	\%	..	69	a	
June	$32^{\prime} \cdot 7$	$\stackrel{5}{4}$.	61	a	
July	$32 \cdot 8$	¢ّ	..	60	a	
August .	$32 \cdot 0$	$\stackrel{\square}{\square}$.	56	36956	
September	$32^{\prime} 8$.	60	6_{0}	
October	32.6		.	58	58	
Noreniber	$32^{\prime} \cdot 8$.	55	65	
December	32'6		.	54	${ }^{54}$	

4. Mean scale values and temperature range.-The mean scale value of the H. F. instrument was $6 \cdot 14 \gamma$ with limiting values of $6 \cdot 13$ and $6 \cdot 15$. That of the V. F. magnetograph varied from $5 \cdot 57$ to $6 \cdot 47$.

The mean temperatures were $18^{\circ} 95 \mathrm{C}$. and $66^{\circ} 11 \mathrm{~F}$. for the H. F. and V. F. instruments respectively with maxima of $19^{\circ} 15$ and $66^{\circ} 58$ in January and minima of $18^{\circ} .81$ and $65^{\circ} 96$ in December.

The temperatures of reduction are $19^{\circ} \mathrm{C}$. and $66^{\circ} \mathrm{F}$.
5. Mean monthly values and secular change.-The following table gives the mean monthly values of the magnetic elements in 1909 with the secular change for 1908-09 deduced therefrom :-

Secular change at Kodaikanal in 1908-09.

III.-Tables of rest'its.
 Index to Tahles.

A.-Mean values of the magnetic elements at the observatorits for 1909.
B.-Classification of curves and dates of magnetic disturbances in 1909.

C-Crables of resulis at Dehra Dun.

D.-	$"$	$"$	$"$ Barrackpore.
E.-	$"$	$"$	$"$ Toungoo.
F.-	$"$	$"$	Kodaikanal.

For each observatory the following tables are gisen :-

1. Hourly means corrected for temperature, of declination, horizontal force, vertical force and dip for five selected quiet days per month.
2. Diurnal inequality of each deduced from 1.

TABLE A.
Mean values of the magnetic elements at the observatories in 1909.

Hourly Means of the Deelination as determined at Dehra Dún from the selected quiet days in 1909.

Ноогя.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.	Means.
E2 ${ }^{+}$Winter.																										
				,	,				,			,		,	,	,	,	,	,	,	,	,		,		,
Months.																										
Janaary	36.2	36.2	$36 \cdot 1$	$35 \cdot 9$	$35 \cdot 7$	35.5	35\%	355	$36 \cdot 1$	37.4	37.5	36.4	35.2	$35 \cdot 1$	$35 \cdot 3$	35.5	35.8	36.1	36.1	36.1	36.0	36.0	36.1	36.2	36.2	36.0
Fabruary	35.8	35.8	36.1	35.8	$35^{\prime} 7$	$35 \cdot 4$	35.4	$35 \cdot 6$	36.2	35.9	$35 \cdot 3$	35.1	34.9	350	$35 \cdot 6$	$36 \cdot 4$	$38 \cdot 8$	36.6	$35 \cdot 8$	$35 \cdot 9$	35.8	35.8	35.7	35.9	- 36.0	35.8
Marcb	35.7	35.6	35.7	$35 \cdot 6$	35.4	$35 \cdot 4$	35.4	36.2	37.3	38.0	376	$35 \cdot 9$	34.3	33.5	33.9	34.8	35.7	36.0	35.5	35.4	35.4	35.4	35.6	35.7	$35 \cdot 8$	35.6
October	34:9	34.8	34.8	34.7	34.6	34:6	34.6	35.5	36.3	38.4	35.5	33.9	32.6	32.2	33.0	34.2	34.7	34.6	34.5	34.6	34.7	34.5	3 ± 7	34.6	34:7	34.6
November	34.5	34.6	34.5	343	34.2	34.0	34.0	34.2	34:9	35.0	34.5	$34 \cdot 1$	$33 \cdot 6$	33.7	3.5	34.8	34.6	34.2	$34 \cdot 3$	34.2	34.2	34:1	34.3	34.4	34.4	34.3
December	$33 \cdot 6$	33.5	$33 \cdot 2$	33.2	32-9	32.8	$32 \cdot 7$	32:7	32.7	$33 \cdot 3$	33.7	$33 \cdot 6$	32.8	$32 \cdot 6$	32.7	33.0	$33 \cdot 4$	$33 \cdot 4$	33.5	33.5	$33 \cdot 4$	$33 \cdot 4$	$33 \cdot 4$	$33 \cdot 4$	33.5	33.2
Means	$35 \cdot 1$	35.1	35.1	349	34.8	34.6	34.6	35.0	35.6	38.0	35.7	34.8	$33 \cdot 9$	33.7	34.2	34.8	35.2	$35 \cdot 2$	35.0	35.0	34:2	34.9	$35 \cdot 0$	350	35.1	34.9

Summer.																								
April	35.4 35.4	35.4		351	$35 \cdot 5$	36.5	37.8	97.8	36.3	${ }^{34} 1$	32.7	32.0	39.4	336	34.7	35:3	35.3	$35 \cdot 1$	34.8	35.0	350	35.2	$35 \cdot 9$	950
May	35\% 350	$35 \cdot 1$	$35 \cdot 1$ $35 \cdot 1$	35.2	36.2	37.2	37.7	37.3	35.7	34.0	$32 \cdot 6$	32.1	32.4	$33 \cdot 1$	38.7	346	34.9	34.5	34.2	34.3	34.5	34.6	34.9	34.8
Jund	34.8 5.2	35.2	$\begin{array}{llll}35 \cdot 3 & 35 .\end{array}$	35.3	36.3	37.1	372	36.8	35.4	$33 \cdot 6$	$32 \cdot 5$	$31 \cdot \theta$	31.9	32.5	33.2	34.0	34.5	34.3	34.3	34.4	34.4	34.5	94.7	34.6
Tuly	34.9350	$35 \cdot 1$	$35 \cdot 1$ 35.2	35.4	36.2	36.8	$38 \cdot 8$	36.6	35.4	34,3	33\%	32,8	32.5	32.9	33.5	3 b 3	34.7	$34 \cdot 3$	341	34.1	34.2	34,4	$34 \cdot 6$	34.7
Augnst	34.5 34.6	34.4	345 346	35.0	36.5	${ }^{38 \cdot 1}$	38.4	$37 \cdot 1$	35.0	33.1	31.8	$30 \cdot 8$	31.5	32.5	33-4	34.5	$35 \cdot 1$	34.7	34.2	34.1	34.1	34.2	344	34.4
Bepternber	314. 34.4	34.5	$34.4{ }^{31 / 4}$	34.4	34.6	35.7	$38 \cdot 4$	36.3	$35 \cdot 1$	33.7	32.5	$31 \cdot 4$	31.9	32.7	33.5	34.0	34*4	34.0	34.0	33.8	$33 \cdot 9$	34.0	34.6	$3 \cdot 1$
Means	348; 34.9	35.0	35.0, 34.9	$33 \cdot 1$	35.9	$36 \cdot 9$	$37 \cdot 4$	37.0	35.5	$33 \cdot 8$	$32 \cdot 6$	$31 \cdot 8$	32.1	$32 \cdot 9$	33.7	345	348	34.5	343	$34 \cdot 3$	34.4	346	34,8	${ }^{34} 6$

Diurnal Inequality of the Declination at Dehra Dün as deduced, from the preceding Table

Hourly，Means of Horizontal Porce in（．．G．S．Unitr．Corveled for t＇mperature）at Deira Dún from the selceled quiet days in 1909.

ппога．	Mid	1	${ }^{2}$	${ }^{3}$		5	6	7	8	9	10	11	Noon	13	14	15		17	18	19	20	21	${ }^{23}$	${ }^{23}$	uid．	Muans．
－33000 + Winler．																										
Months．	γ	7	γ																							
Jauary	272	273	274	278	276	2－8	220	281	283	284	：83	283	288	28.5	281	279	270	$2 \cdot 5$	276	277	276	$2: 6$	277	279	279	278
February	279	280	280	278	280	278	280	283	286	：9	295	300	303	305	302	294	287	284	280	279	－79	9；9	231	280	280	2ヶ6
Narch	271	276	270	273	272	27，	273	272	27	274	280	285	287	293	293	288	278	273	279	271	271	274	271	27.	273	277
October	${ }^{231}$	230	229	234	233	232	233	233	299	227	：34	24？	251	253	248	2.3	234	$2: 4$	2：8	2：8	228	230	232	：3	293	234
November	245	241	241	242	242	24	245	249	253	：65	258	282	261	$2: 7$	251	215	241	238	240	239	237	240	240	242	2＋4	± 46
Jeceuber	254	248	253	253	251	251	253	¢5i	264	266	268	270	266	263	263	261	253	256	256	257	255	256	306	206	256	258
Means	258	259	258	259	259	260	261	263	264	266	27.	274	270	278	273	$2 \div 8$	262	259	259	259	253	259	259	： 61	231	263

Summur．

	\％
	郎
	\％
	界
	${ }_{3}$
圌	罶
	宦
	\％
	产
	ฐ్ల్
	\＄
	$\stackrel{\rightharpoonup}{\sim}$
気	\％
	产
	$\stackrel{\text { a }}{\text { a }}$
	$\stackrel{\square}{i}$
	永
	㻊
	吕
	賉
	䍓
	号
	鱼
可 $\vec{\sim}$	\％
	㥻
	号
	$\stackrel{\square}{\text { giver }}$

Hours.	MiJ.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.

Winter.

Summer.

Winter.

Moathe.	7	γ	γ	γ	7	γ	7	γ	v	γ	γ	γ														
Janamry	862	863	862	861	861	861	882	862	885	864	859	851	849	851	855	851	858	859	889	859	859	859	860	860	${ }^{861}$	859
Febranty	879	873	877	878	678	877	877	878	878	877	873	869	888	873	876	876	876	875	875	877	877	877	878	878	878	876
March	875	876	873	875	874	875	875	878	878	876	867	879	856	861	867	872	874	873	873	87.	876	876	876	877	977	872
October	953	954	954	953	933	953	$95 \pm$	959	958	953	947	938	ө33	9.11	9.17	951	951	950	${ }^{95} 2$	953	953	955	956	957	955	951
No:: mber	950	914	940	943	948	948	948	950	948	943	940	${ }^{838}$	939	942	944	945	946	945	947	9.47	947	949	949	949	950	9¢j
Decerber	965	964	954	964	963	9 9\%	965	263	965	964	962	$9 \% 2$	880	961	964	967	968	96	989	963	967	963	968	968	969	965
$\mathrm{I}_{\text {¢ }}$ ans	014	91.	913	${ }^{913}$	${ }^{913}$	913	${ }^{914}$	915	918	913	908		901	905	90	911	912	912	913	913	913	914	915	${ }^{415}$	915	912

['Vol. I.
Diurnal Inecuality of the Fertical Force at Dehra Dún as deluced from the preceding Table.

Honra.	Mid !	1	2	s	4	5	6	7	8		10	${ }^{11}$	Noon.	${ }^{13}$	14	15	16		18	19	20	${ }^{21}$	${ }^{23}$	29	yid.
Winter.																									
											γ														
	γ	γ		${ }^{7}$	7 +8	γ +3	r +3	+	+	+5	1	--8	-10	-8	-4	-2	-1	0	0	0	0	0	+1	+1	+1
January	+3	+3	+3	+3	+3	+2	+3	$+3$	$+{ }_{+}^{+}$	+5 +1	-3	-7	-8	-3	0		0	-1	-1	+1	+1	+1	+2	+2	+ 9
Febraary	+3	+ 8	+1	+ 2	+2	+1	+1	+s	+2	+1	-3		-8	-11	-5	0	+	+1	+1	+2			+4	+5	+
Narch	+3	+4	+1	+3	+2	+3	+ 3	+6	+7	+1	-5	-13	-18	-11	-5	0	+	+1	+1	+2	$+1$	+4	${ }^{+4}$	$+5$	+5
October	+3	+3	+ 3	+3	+4	+2	+3	+8		+2	-4	-13	-15	-10	-4	0	0	-1	+1	+2	+3	+4	+5	$+6$	$+4$
Norember	+ 4	+3	+3	+2	+2	+2	+3	+4	+2	-3	-6	-8	-7	-4	-2	-1	0	-1	+1	+1	+1	+3	$+3$	+3	+ +
Teeember	0	-1		-1	-2	-3	0	-2	0	--1	-3	-3	-5	-1	-1	+2	+3	+3	+4	+3	+2	+3	+3	+3	+3
Меавя	+2	+2	+1	+1	+1	+1	+ 8	+3	+4	+1	-4	--9	-11	--i	-3	-1	0	0	+1	+1	+1	+2	+ 3	$+3$	$+3$

Hourly ．Moans of the Dipas determined at Deliru Dún from the selected quiet days in 1909

Hoara．	Mid．	1	2	9	4	5	6	7	8	θ	10	11	Noon．	13	14	15	16	17	18	19	20	21	22	23	Mid．	Ncana．
N． $49+$ Winter．																										
Monthe．	，	，	，								，											，		，	，	，
January	$45 \cdot 8$	45.5	45.6	$45 \cdot 3$	$45 \cdot 3$	45.2	45.2	$45 \cdot 1$	45.2	$45^{\circ} 1$	44.9	41.4	44.2	41．3	44.7	45.0	452	4：3	45.2	45.2	45.2	45.2	453	$45 \cdot 1$	$45 \cdot 1$	$45 \cdot 1$
Febraary	$48 \cdot 1$	461	46.0	46．1	46.1	$40 \cdot 1$	460	$45 \cdot 9$	457	454	45.0	44.6	44.3	44.5	44.8	45＇2	45.6	457	45＇9	46.1	$46^{\cdot 1}$	46.1	461	46.1	46.1	45.7
March	$46 \cdot 3$	46.1	46.3	$46 \cdot 3$	$46 \cdot 3$	$46 \cdot 1$	463	45.5	$48 \cdot 5$	$46 \cdot 2$	$45 \cdot 5$	44.8	44.5	44.5	44.8	$45 \cdot 3$	$45 \cdot 9$	46.1	46.1	46.3	48.4	46.2	$46 \cdot 4$	46.4	－46．4	459
October	52.7	52.7	52．8	52.5	52.5	52\％	52．6	52.8	53.0	52：8	59.1	51.2	$50 \cdot 7$	$50 \cdot 8$	51．4	51.9	$5 \% 9$	52.7	52－i	59•8	52.8	52：8	52.7	5% \％	53.5	52.9
November	51.7	51.9	519	51.8	$51 \cdot 8$	51.7	51.6	51．5	$5 \cdot 2$	$50 \cdot 8$	50.5	$50 \cdot 2$	$50 \cdot 3$	50.7	$51 \cdot 1$	51．4	51．8	5.8	51.8	51.9	$52 \cdot 0$	520	5－0	51.8	51.8	51．5
December	52.1	$52 \cdot 3$	62.1	52.1	62：1	5\％1	52.1	51.8	516	51.4	51\％	51.1	51.2	514	51．6	51.8	520	52：3	$5 \cdots 2$	52．1	$52 \cdot 1$	52.1	52.1	5：1	52.1	51.9
Meane	$49 \cdot 1$	4911	491	49.0	49.0	49.0	49.0	$48 \cdot 9$	$48 \cdot 9$	$48 \cdot 6$	$48^{\circ} 2$	47.7	$47 \cdot 6$	477	48.1	48．4	$48 \cdot 8$	49.0	49.0	49.1	49.1	49.1	49．1	49.0	49.0	48.7

			$\stackrel{\circ}{-}$	－	－	$\stackrel{\sim}{\square}$	\％
		$\stackrel{0}{4}$	8	4	$\stackrel{1}{7}$	－	$\stackrel{8}{9}$
	$\stackrel{\square}{9}$	$\stackrel{\infty}{6}$	$\stackrel{+}{-}$	${ }_{8}$	$\stackrel{8}{0}$	荌	－
\％		－	운	H	－	$\stackrel{\square}{\square}$	0
3		$\stackrel{\infty}{\square}$	\％	－	$\stackrel{+}{4}$	$\stackrel{0}{0}$	\bigcirc
\％		\％	$\stackrel{\circ}{\square}$	令	$\stackrel{\square}{8}$	－	$\stackrel{\square}{\circ}$
\％		\％	i	\％	－	$\stackrel{3}{\square}$	$\stackrel{*}{7}$
i		－	\％	－	$\stackrel{4}{7}$	$\stackrel{\square}{\square}$	$\stackrel{\circ}{-}$
＋		－18	$\stackrel{\sim}{0}$	－	$\stackrel{\text { ¢ }}{\text {－}}$	$\stackrel{\square}{\square}$	＋
＇	i	－	\％	\％	\％	－	＊웅
	＋	荌	$\underset{\substack{\text { in } \\ \text { in }}}{\text { in }}$	앙	管	$\stackrel{3}{\text { ion }}$	\％
		守	\％	i	$\stackrel{3}{3}$	$\stackrel{9}{8}$	产
		$\stackrel{\infty}{\dot{7}}$	$\begin{aligned} & \text { io } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \infty \\ & \text { in } \\ & \hline \end{aligned}$		$\stackrel{\text { O}}{0}$	$\begin{aligned} & \Phi \\ & \stackrel{0}{\circ} \\ & \dot{\sim} \end{aligned}$
		$\begin{aligned} & \infty \\ & \underset{y}{*} \\ & \hline \end{aligned}$	落	$\begin{aligned} & \text { ì } \\ & \text { in } \end{aligned}$	$$	8	$\begin{aligned} & \mathbf{c}_{\infty}^{\infty} \\ & \dot{\sim} \end{aligned}$
	甭	＋	虽	－	¢	$\stackrel{\sim}{-}$	$\stackrel{\square}{9}$
	＋	－	\％	¢	－	$\stackrel{\text { P }}{\text { ¢ }}$	$\stackrel{\sim}{\circ}$
	9	＋	$\stackrel{0}{4}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	＊	$\stackrel{\square}{\square}$	\％
	9	－	－	\％	$\stackrel{\text {＋}}{4}$	$\stackrel{\oplus}{\circ}$	$\stackrel{\circ}{\text {－}}$
	\％	$\stackrel{+}{4}$	年	$\stackrel{\square}{9}$	～	$\stackrel{\text { ¢ }}{\text {－}}$	$\stackrel{\square}{8}$
	t	$\stackrel{8}{4}$	$\stackrel{\text {－}}{ }$	－	$\stackrel{\sim}{1}$	$\stackrel{10}{10}$	$\stackrel{8}{4}$
	\％	－	\％	$\stackrel{N}{*}$	\％	$\underset{\sim}{*}$	臹
		$\begin{aligned} & \hline 9 \\ & \dot{\circ} \end{aligned}$	$\stackrel{2}{2}$	¢	＋	$\stackrel{H}{i}$	$\stackrel{\circ}{5}$
\bigcirc		¢	$\stackrel{i}{i}$	$\stackrel{\text { ¢ }}{\substack{\text { a }}}$	$\stackrel{\text { ® }}{\text { ¢ }}$	$\stackrel{+}{i}$	守，
	\％	¢	$\overrightarrow{7}$	－	운	尝	$\stackrel{9}{4}$
		＋	－	＋	－	安	\％
	\％	$\stackrel{(0)}{9}$	$\stackrel{\sim}{1}$	＋	$\stackrel{\square}{+}$	菏	$\stackrel{\circ}{8}$
	$\frac{\pi}{4}$	合	品			呂	最

Diurnal Jnequality of the Dip at Dehra Dún as deduced from tho preceding Table.

Hourly Means of the Declinations as determined a! Darrackpore fiom the selectel guiet days in 1909 .

Hours.	mid.	1	2	3	4	5	6	7	${ }^{8}$	9	10	11	Noon.	13	14	15	16	17	${ }^{18}$	19	20	21	23	23	Mia.	Menns
E. $0^{\circ}+\quad$ Wint																										
Montbs.																										
January	$69 \cdot 1$	63.0	63.0	62.8	62.7	62.4	62.1	6:1	$62 \cdot 9$	63.8	01.2	$63 \cdot 4$	$62 \cdot 5$	$62 \cdot 4$	$62 \cdot 6$	62.7	62:8	62.9	$62 \cdot 9$	63.0	63.0	82.9	$63 \cdot 9$	63.0	63.0	$62 \cdot 9$
Febraary	62.8	$62 \cdot 6$	62.6	62.6	625	62.3	81.8	$62 \cdot 1$	628	62.7	62.2	61.0	$61 \cdot 8$	62.4	$63 \cdot 1$	63.6	637	63.1	6 13	62.5	625	624	63.3	62.3	624	62.5
March	69.2	$62 \cdot 1$	6: 0	62.0	63.0	61.7	61.9	628	637	64.0	$63 \cdot 7$	62.3	61.1	$60 \cdot 8$	61.1	$61 \cdot 9$	$62 \cdot 8$	62.8	63.2	69.2	69.0	62.0	62.0	62.2	$6 \% \cdot 2$	$69 \cdot 2$
October	69-8	59.9	59.9	$59 \cdot 9$	59.7	595	59.8	60.7	01.4	61.0	$59 \cdot 9$	$58 \cdot 9$	582	58.1	59.0	59.8	60.1	59.7	59.6	59.7	59.6	59.6	59.6	59.8	ธ9\%	59.7
November	$59 \cdot 3$	59.2	59.3	59.0	58.9	58\%	58.6	59.0	59.5	59.7	$59 \cdot 3$	589	59\%)	59.6	60.0	59.7	59.4	:8.8	58.9	59.0	590	5: s	59.	59.0	59	59.2
Deormber	58.5	58.4	58.2	58.0	57-8	57.7	57.6	57.5	57.9	58.6	$58 \cdot 1$	$58 \cdot 8$	58.4	58.1	58.1	583	58.7	596	$58 \cdot 3$	58.4	58.2	582	58.2	5:3	$58 \cdot 3$	58.2
Means	61.0		60.8	60.7	$60 \cdot 6$	60.4	$60 \cdot 3$	607	$61 \cdot 4$	81.8	81.4	607	80.2	$60 \cdot 3$	60.7	61.0	${ }_{61} 13$	610	60%	$60 \cdot 8$	60.7	617	$6) 7$	60.8	6) 8	60

Diurnal Inequality of the Declination ot Barraikpore as deducedfrom the preceling Table.

Howly．Means of Horizontal Force in C．G．S．Units（Correctell for temperature）at Barrackpore from the selected quiet days in 1909.

Hoars．	Mid．	1	2	${ }^{3}$	4	5	6	7	3	9	10	11	Noon．	13	14	15	16	17	18	19	20	${ }^{21}$	${ }^{22}$	23	Mid．	Meane．
$378000+$ Winter．																										
－Monthe．	γ	7	γ	Y	γ																					
Janary	288	291	291	293	295	297	299	303	306	313	318	317	316	314	311	304	300	297	297	296	296	294	293	295	298	301
February	284	296	296	295	295	297	299	305	313	322	3：6	332	334	329	323	317	310	306	301	300	299	296	297	299	300	307
March	293	254	288	234	285	285	289	289	292	301	312	320	324	320	315	306	296	293	290	289	286	287	287	286	288	295
October	251	250	251	252	256	256	256	254	254	260	270	283	282	289	280	271	266	259	253	253	250	250	252	252	258	261
Norember	280	284	282	283	285	286	290	293	305	313	319	322	318	310	302	295	290	285	285	282	291	280	$\Sigma 83$	283	285	293
December	288	291	290	295	295	294	295	301	308	316	321	326	324	318	312	307	300	297	294	295	295	295	294	295	296	302
Means	281	283	293	284	285	286	288	291	296	30.4	311	317	318		307	300	294	290								
														313	307	305	294	290	287	286	285	294	294	285	288	293

Summer．

号 $\stackrel{\circ}{\circ}$ ¢	\％
	\％
	㐫
	产
	品
ㅇ్¢ 呙	
吅 \＃¢	$\stackrel{\circ}{\text { a }}$
	䍖
	흉
	\％
	会
	長
	\％
	\％
	\％
	$\stackrel{9}{9}$
	च
	항
	苍
	产
	¢
\％\％\％	衰
	¢
芦念 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ \％	骨
	馬
	骨
	哭

Diurnal Inequality of the Horizontal Force at Barrackpore as deduced from the preceding Table.

Summer.																									
	-12	-11	-11	-10	-9	-8	-8	-8	-6	+9	+2*	+31	+35	+32	+23	+12	+1	-8	-12	-13	-15	-14	-13	-12	-11
April	-12	-11	-11	-12	-11	-12	-9	-4	-1	+8	+18	+27	+31	+29	+22	+13	+ 5	-3	-11	-15	-14	-12	-11	-12	-8
May	-12	-12	-12							$+8$	+14	+20	+85	+25	+18	+10	0	-7	-8	-10	-10	-9	-10	-10	-9
Jane .	-13	-11	-10	-10	-9	$\rightarrow 7$	-5	+1	+8	$+8$	+14			+23	+16	+11	+6	-6	-13	-14	-12	-10	-9	-7	-6
Júy	-9	-7	-8	-9	-10	-9	-5	+1	+4	+8	+14	+17	+20	+23	+16	+11	+6	$\begin{aligned} & -6 \\ & -7 \end{aligned}$	-13	-14	-12	${ }_{-8}^{-10}$	-9	-6	-4
Augast.	-5	-5	-7	-2	-3	-3	-1	+1	0	+1	+7	+14	+19	+18	+11	+4	-1	-7	-8 +1	-8	-8	-8	-8	-7	-7
September	-6	-6	-5	-5	-3	-2	-2	-5	-11	-7	+3	+9	+17	+23	+20	+14		0	+1	-3	-6				
Means			-9	-8	-7	-7	-5	-2	-2	+5	+13	+20	+25	+25	+18	+11	+3	-5	-8	-10	-11	-10	-9	-9	-7

Hourly means of Fertical Force in C. G. S. Units (Corrected for temperature) at Barrackpore from the selected qui:t days in 1909.

Summer.

April	085	085	086	086	086	086	088	087	083	075	068	085	068	075	080	083	084	084	084	085	086	086	087	087	088	089
May . .	093	093	093	092	092	092	094	091	086	079	076	073	075	076	080	085	087	090	091	091	093	093	093	093	093	088
June	098	098	097	098	097	098	100	099	098	095	091	089	090	090	090	093	095	095	096	097	097	097	098	097	097	096
- Joly .	107	107	107	107	106	107	109	108	105	103	098	093	091	094	096	099	103	102	104	106	108	108	108	108	108	103
Angust	110	110	110	110	109	111	113	109	104	099	096	085	100	102	103	105	106	106	106	106	108	109	109	108	109	106
September	122	122	122	122	122	122	123	121	118	113	109	106	107	110	114	117	117	117	119	120	121	121	122	123	122	118
Means	103	103	103	103	102	-103	105	103	093	094	090	087	089	091	094	097	${ }^{\bullet} 099$	099	100	101	102	102	103	103	103	099

Diurual Inequality of the Vertical Force it Barrackpore as deduced from the preceding Table．

Hoors．	Nid．	1	2	3	4	5	6	7	8	9	16	11	Noon．	${ }^{13}$	14	15	16	17	18	19	20	21	22	23	Mid
Winter．																									
Nouths．		γ	${ }^{\gamma}$	γ	7	γ	γ	γ	7	γ	γ	γ	γ												
January	＋2	＋2	＋3	＋4	＋3	＋4	＋5	＋6	＋6	＋2	－	－10	－10	－6	－3	－3	0	＋2	＋3	＋2	＋1	＋2	＋2	＋2	＋3
February	＋1	＋1	＋1	＋1	＋1	＋2	＋4	＋5	＋4	－1	－4	－7	－8	－7	－5	－3	0	－1	0	＋1	＋1	＋2	＋ 3	＋2	＋2
Marcb	＋ 5	＋5	＋5	＋ 6	＋ó	＋6	＋6	＋8	＋5	0	－10	－15	－17	－13	－9	－4	－2	－1	＋1	＋2	＋4	＋5	＋4	＋5	＋5
October	＋7	＋6	＋6	＋6	＋6	＋7	＋ 7	＋9	＋6	＋1	－6	－10	－11	－8	－6	－4	－3	－4	－2	－1	0	0	＋1	＋1	＋1
November	＋4		＋4	＋5	＋6	＋5	＋6	＋ 0	＋	－1	－5	－8	－9	－8	－8	－7	－4	0	＋2	＋2	＋2	$+2$	＋3	＋3	＋3
December	＋2	＋2	＋2	＋2	＋2	＋2	＋3	＋4	＋3	＋1	－1	－5	－7	－7	－5	－2	－1	－1	＋1	＋1	＋1	0	＋1	＋1	＋1
Means	＋3	＋3	＋3	＋3	＋3	＋4	＋5	＋ 6	＋4	0	－6	－10	－11	－9	－6	－4	－2	－1	0	＋1	＋1	＋1	＋2	＋2	＋2

	\pm
	$\stackrel{+}{+}$
¢＋＋＋＋＋＋＋＋	${ }_{+}$
が꾸¢ ¢＋＋	$\stackrel{m}{+}$
ザ	＋
¢ ¢ ¢ ¢＋¢ ¢	$\stackrel{+}{+}$
¢ ¢ ¢ 7 ¢ ${ }_{\text {¢ }}^{+}$	7
	\bigcirc
$\stackrel{1}{+} \vec{i}$	\bigcirc
	i
¢i¢ i ¢ i	i
	$\stackrel{c}{1}$
	$\stackrel{1}{1}$
¢ ¢ ¢ ¢ ¢ ¢ ¢	$\stackrel{\sim}{1}$
	i
个itorip	i
7	－
	\pm
	$\stackrel{+}{+}$
	\ddagger
\＃ $\overrightarrow{+}$＋$+\infty$＋	$\stackrel{\square}{+}$
＋$\ddagger+$＋+ ＋\ddagger	＋
	＋
¢ ¢＋＋＋＋＋＋	\ddagger
	7
	吕

Hourly Means of the Dip as determined at Barrackpore from the selected quiet doys in 1909.

Boars.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	${ }^{21}$	22	23	Mid.	меале.
N. $30^{\circ}+\quad$ Winter.																										
																			,	,	,	,	,		,	
January	$37 \cdot 4$	37.3	37.4	374	37.2	37.2	37.2	37.1	37.0	36.4	357	$35 \cdot 5$	35.5	35.8	36.1	36-4	36.3	371	37.2	$37 \cdot 1$	37.0	37.2	37.2	37-3	3711	$3{ }^{\prime} 8$
Febraary	37.2	37.1	371	37.2	37.2	37.2	37.2	37.0	36.6	$35 \cdot 9$	$35 \cdot 6$	35.1	35.0	$35 \cdot 2$	$35 \cdot 6$	36.0	36.5	36.6	36.8	36.9	37.0	37-2	37.2	370	$37 \cdot$	36.6
March	38.3	38.3	38.1	38.3	38.3	38.3	38.2	383	38.0	$37 \cdot 3$	36.1	35.5	35.2	35.6	36.1	36.8	37.3	37.5	37.8	37.9	33.1	$38 \cdot 2$	$38 \cdot 1$	38.2	38.1	37.5
October	42.8	$42 \cdot 8$	$42 \cdot 7$	$42 \cdot 7$	42.5	$42 \cdot 6$	42.6	$42 \cdot 8$	$42 \cdot 6$	$42 \cdot 0$	$41 \cdot 2$	$40 \cdot 4$	$38 \cdot 8$	$40 \cdot 3$	$40 \cdot 8$	413	416	41.8	42.1	$42 \cdot 2$	42.4	$42 \cdot 4$	42.4	$42 \cdot 4$	$42 \cdot 1$	42.0
November	41.0	409	$40 \cdot 9$	41.0	$40 \cdot 8$	40.8	$40 \cdot 8$	$40 \cdot 6$	$40 \cdot 0$	$39 \cdot 4$	38.9	38.5	38.6	39.0	$39 \cdot 3$	39.7	$40 \cdot 1$	$40 \cdot 6$	$40 \cdot 7$	40.8	40.9	$40 \cdot 9$	$40 \cdot 9$	409	40.8	403
December	41.5	41.4	41.4	41.2	$41 \cdot 2$	41.2	41.2	41.1	49.7	$40 \cdot 2$	$39 \cdot 9$	39.4	$30 \cdot 4$	39.6	40.0	$40 \cdot 4$	$40 \cdot 8$	40.9	41.1	$41 \cdot 1$	41.1	41.0	41.1	$41 \cdot 1$	41.1	40.8
Meaus	$39 \cdot 7$	$39 \cdot 6$	39.6	$39 \cdot 6$	39.5	$39 \cdot 6$	39.5	39.5	$39 \cdot 2$	33.5	$37 \cdot 9$	374	37.3	$37 \cdot 6$	38.0	38.4	$38 \cdot 9$	$39 \cdot 1$	39:3	393	$39 \cdot 4$	395	39.5	39.5	394	390

April .	37.7	37.6	37.7	37.6	37.6	376	37.8	37.6	37.2	36.1	35.0	34.0	34.6	3.3	$35 \cdot 9$	36.6	37.0	37.4	97.6	37.7	37-8	37.8	$37 \cdot 8$	37.8	$37 \cdot 8$	37.0
May	38.4	38.4	38.4	38.4	$38 \cdot 3$	38.4	38.4	38.0	37.5	36.7	36.1	35.5	35.5	35-6	36.2	36.9	37.4	37.9	$38 \cdot 3$	38.4	38.5	38-4	38.4	384	38.3	37.6
June	38.8	38.7	38.6	38.6	38.5	38.5	$38 \cdot 6$	$38 \cdot 3$	38.1	37.7	37.2	36.8	307	36.7	37.0	37.5	38.0	$38 \cdot 3$	38.4	$38 \cdot 6$	38.6	38.5	386	$38 \cdot 6$	38.5	38.1
$\mathrm{Jaly}^{\text {l }}$	39.3	$39 \cdot 2$	39.3	393	393	39.3	$39 \cdot 3$	390	38.6	383	378	37.3	37.1	$37 \cdot 1$	37.5	38.0	38.5	33.8	39.2	$39 \cdot 4$	$30 \cdot 5$	39\%	39.4	39.3	$39 \cdot 2$	38.7
Augast	39.5	39.5	$30 \cdot 7$	39.4	$39 \cdot 4$	39.5	39.6	39.2	39.0	38.5	38.1	37.7	37.9	38.1	39.4	38.9	39-1	39.4	$39 \cdot 4$	39-4	39.5	39.6	39.5	39.5	39.4	$39 \cdot 1$
September	409	40.9	40.8	$40 \cdot 8$	$40 \cdot 8$	40.7	$40 \cdot 8$	$40 \cdot 8$	40.8	$40 \cdot 3$	39.7	$39 \cdot 2$	39.0	33.8	39.3	30.8	40.0	$40 \cdot 3$	404	40.7	408	40.9	41.0	41.0	$40 \cdot 9$	40.4
- Means	391	391	$39 \cdot 1$	39	$39 \cdot 0$	39.0	$39 \cdot 1$	$38 \cdot 8$	38.5	37.9	373	36.9	$30 \cdot 8$	$30 \cdot 9$	37-4	380	3893	38.7	38.9	390	33	$39 \cdot 1$	38	39.1	39.0	38.5

RECORDS OF THE SURVEY OF INDLA, 1809.10.
[Vol. I.
Diurnal Inequality of the Dip at Barrackpore as deduced from the preceding Table.

Huare	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20		22	23	Mid.
Winter.																									
						,	,	,	,	,		,	,											,	
Months.																					+0.2			+0.4	$+0.3$
Jsnaary	. +0.0	+ 1 - 5	+0.6	+0.6	+0.4	+0.4	+0.4	+0.3	+0.2	-0.4	-1.1	-1.3	-1.3	-1.0				+0.3	+04	+0.3	+02	$+0.4$	$+0 \pm$	+0.4	
January		+	+0.	+0.6		+0.6	+0.6	+0.4				-1•5	$-1 \cdot 6$	-1.4	-1.0	-0.6	-0.1	0	+0.2	$+0.3$	+0.4	+0.6	+0.6	+04	+0, 4
February	- +0.6	+0.5	+0.5	+0.6	+0.6	+0.6	+06	+0.4						-1.9	-1.4	-0.7	-0.2	0	+0.3	+0.4	+0.6	$+0.7$	$+4.6$	$+0.7$	+0.6
March .	- +0.8	$+0.8$	+0.6	+0.8	+0.8	+0.8	+0.7	+0.8	+05					-19	-1.		-0.4								+0.1
October	. +0.8	+0.8	+0.7	+0.7	+0.5	+0.6	+0.6	$+0.8$	+0.6	0	-0.8	-1.6	:-2.1	-1.7	-1.2	-0.7	-0.4	-0.2	+0.1	+0.2	+0.4	+0.4	+0.4	+ 04	+0.
										-0.9	-14	-1.8	-1.7	-1.3	-1.0	-0.6	-0.2	+0.3	+0.4	+0.5	+0.6	+0.6	+0.6	+0.6	$+0.5$
November	. +0.7	+0.6	+0.6	+07	+0.5	+0.5	+0.5	+0.3		-0.9	-1.9	-1.4					0	+0.1	+0.3	+0.3	+0.3	+0.2	+0.3	+0.3	$+0.3$
December	+0.7	+0.6	+0.6	$+0.6$	+0.4	+0.4	+0.4	+03		-0.6	-0.9	-1/4	-1.4	-1.2	-0.8	-0.4	0	+01							
												-1.6	-1.7	-1/4	-1.0	-0.6	-0.1	+0.1	+03	+0.3	$+0.4$	40%	+0.5	+0.5	$+04$
Means	+0.7	+0.6	+0.6	+0.6	+0.5	+0.6	+0.5	+0.5	+02	-05	-11	-16	-												

Summer.																									
	.+0.7	+0.6	$+0.7$	+06	+06	$+0.6$	+0.8	$+0.6$	+0.2	-0.9	-2.0	-2'4	-24	-1.8	$-1 \cdot 1$	-0.4	0	$+0.4$	+0.6	+07	$+0 \cdot 8$	$+0.8$	$+0.8$	+ 0.8	$+0 \cdot 8$
April .	$\cdot+07$	$+0.6$	+0.	$+06$	+0.6 +0.7	+0.6 +0.8	+0.8	+0.4		-0.9	-1.5	-2.1	-21	-2.0	-1.4	-0.7	-0.2	$+0.3$	$+0: 7$	$+0.8$	+0.8	+0.8	$+0.8$	+08	$+07$
May.	- +0.8	$+0.8$	$+0.8$	$+0.8$	$+0.7$	+0.8	+08	+04	-0.1	-0.3	-15	-21	-21	-1.4	-1.1				+0.3	+0.5	+0.5	$+0.4$	+0.5	$+0.5$	$+0.4$
June	. +0.7	$+0.6$	$+0.5$	+0.5	$+0.4$	+04	$+0.5$	$+0.2$	0	-0.4	-0.9	-13	$-1 \cdot 4$	-1.4	$-\mathbf{1} \cdot 1$	-0.6	-0.1	+0.2 $+0 \cdot 1$	+0.3 +0.5	+0.3 +0.7	+0.5 +0.8	+0.2 +0.7	+0. +0.7	+0.6	$+0.5$
July	. +0.6	+0.5	+0.6	$+0.6$	$+0.6$	$+0.6$	+0.6	$+0.3$	$-0 \cdot 1$	-0.4	-0.9	-1.4	$-1 \cdot 6$	-1.6	$-1 \cdot 2$	-0.7	-0.2	+0.1	+0.5	+0.7	$+0.8$	$+0.7$	$+07$	+06	+
Juls	$\cdot+00$	$+0.1$	+0.0						-0.1	-0.6	-1.0	-1.4	$-1 \cdot 2$	$-1 \cdot 0$	-0.7	-0.2	0	$+03$	$+0.3$	$+0 \cdot 3$	$+0.4$	$+0.5$	+04	+0.4	$+03$
August.	. +0.4	$+0.4$	+0.6	$+0.3$	$+0.3$	+0.4	$+0.5$	$+0.1$	-0.1	-0.6	-10	-14					-0.4	-0.1	0	$+03$	+0.4	+0.5	+0.6	+0.6	$+0.5$
September	. +0.5	$+0.5$	+0.4	$+0.4$	+0.4	$+0.3$	$+0.4$	$+0.4$	$+04$	-0.1	-0.7	-1.2	$-1 \cdot 4$	-1.5	$-1 \cdot 1$	-0.6	-04	-0.	0	+03	+0.4	+ 0			
															-1.1	-0.5	-0.2	+0.2	+04	$+0.5$	+06	+0.6	+0.3	$+0 \cdot 6$	$+0.5$
Meana	. $1+06$	$+0.6$	$+0.6$	$+0.5$	$+0.5$	$+05$	$+0.6$	$+0 \cdot 3$	0	-0.6	-12	-16	1^{-17}	(-1.6	-1	-		+							

Hoare.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon	13	14	15	16	17	18	19	20	21	22	33	Mid.	Meana.
$\mathbf{E} 0^{\circ}+\quad$ Winter.																										
- Months.	,	,	,	,	,	,	,	,	,	,	,	,	-	,	,	,	,	,	,	,	,	,	,	,	,	,
Janamery	$32 \cdot 3$	32.4	$32 \cdot 2$	32.1	32.0	31.8	31.5	31-3	318	32.7	33•1	32.7	$32 \cdot 1$	$32 \cdot 2$	$32 \cdot 3$	32.1	$32 \cdot 2$	324	32-2	32.3	$32 \cdot 2$	32.2	32-2	$32 \cdot 3$	32-2	$32 \cdot 8$
February	32.0	32.0	31.9	31.9	31.8	91.8	31.3	31.4	31.9	31.9	31.7	31'5	31.6	32.2	$32 \cdot 6$	$32 \cdot 9$	$33 \cdot 0$	32.5	31.8	31.6	31.6	31.5	31.5	31.5	31.5	31.9
March	$31 \cdot 3$	$31 \cdot 3$	31.4	31.3	31.3	31.1	31.2	31.8	$32 \cdot 5$	$32 \cdot 8$	323	31.6	30.5	$30 \cdot 3$	30.6	31.5	$32 \cdot 1$	$31 \cdot 9$	31.5	31-4	31.4	31.4	31.3	31-2	31.2	31.5
October	28.6	$28 \cdot 6$	$28 \cdot 8$	28.7	28.6	28.5	28.8	29.6	$28 \cdot 9$	29.5	$28 \cdot 6$	$27 \cdot 9$	$27 \cdot 3$	$27 \cdot 3$	$28 \cdot 1$	$28 \cdot 8$	29.1	28.6	28.4	28.7	28.5	28.4	28.4	28.7	28.6	$28 \cdot 6$
November	$28 \cdot 4$	$28 \cdot 3$	$28 \cdot 3$	$28 \cdot 2$	28.1	28.0	27.9	28.2	28.4	$28 \cdot 3$	$28 \cdot 1$	27.8	$27 \cdot 8$	28.2	28.5	28.4	28.4	281	27.8	27.9	27.9	27.9	27.8	27.9	28.0	28.1
December	27.6	27.6	27.5	$27 \cdot 3$	27.3	27.0	27.0	28.8	27.0	27.6	28.1	28.2	27.9	27.6	$27 \cdot 4$	27.7	28.0	279	$27 \cdot 6$	27.6	$27 \cdot 6$	274	27.4	$27 \cdot 5$	275	27.5
Means	30.0	30.0	30.0	29.9	$29 \cdot 9$	29.7	29.6	29.9	$30 \cdot 3$	30:5	$30 \cdot 3$	30.0	$20 \cdot 5$	29.6	$29 \cdot 9$	302	305	30'2	$29 \cdot 9$	29.9	$29 \cdot 9$	$29 \cdot 8$	29.8	39.9	$29 \cdot 8$	30.0

Summer.

Hours.	Mid.	1	2	8	4	5	6	7	8	9	10	11	Noon	13	14	15	16	17	18	19	20	21	22	23	Mid.

Winter.

Months.		,	,	,		,	,	,	,	,	,	,	,	,	,	,	,		,	,	,	,	, ,	,
Janaary	. +0.1	+0.2	0	-0.1	-0.2	-0.4	-0.7	-0.9	-0.4	+0.5	+0.8	$+0.5$	$-0 \cdot 1$	0	$+0 \cdot 1$	-0.1	0	+0.2	0	$+0.1$	0	0	$0: 0 \cdot 1$	0
February	- +0.1	$+0 \cdot 1$	0	0	-0.1	-0.1	-0.6	-0.5	0	0	-0.2	-0.4	-03	+0.3	$+0.7$	$+10$	$+1 \cdot 1$	+0.6	-0.1	- 63	-0.3	-0.4	$-0.4-0.4$	-0.4
March	. -0.2	-0.2	$-0 \cdot 1$	-0.2	-0.2	-0.4	-0.3	$+0.3$	$+1.0$	$+1 \cdot 3$	+0.8	$+0 \cdot 1$	-10	-1.8	-0.9	0	$+0.6$	$+0.4$	0	-0.1	-0.1	-0.1	$-0.2-0.3$	-0.3
October	0	0	$+0.2$	+0.1	0	-0.1	+022	+1/9	+1•3	$+0.9$	0	-0.7	-13	-1•3	-0.5	+0.2	$+0.5$	0	-0.2	+0.1	$-0 \cdot 1$	-0.2	$-0.2+0.1$	0
Norember	.$+0 \cdot 3$	$+02$	+0.2	+0.1	0	-0.1	-0.2	+0.1	$+0.3$	$+0.2$	0	-0.3	-0.3	+0.1	$+0.4$	$+03$	$+0.3$	0	-0.3	-0.2	-0.2	-02	$-0.3-0.2$	-0.1
December	- +0.1	$+0.1$	0	-0.2	-0.2	-0.5	+0.5	-0.7	-0.5	$+0 \cdot 1$	+0.6	+0.7	+0.4	+0.1	$-0 \cdot 1$	$+0.2$	$+0.5$	+0.4	+0.1	+0.1	+0.1	-0.1	-0.10	0
Means	0	0	0	$\mid-0 \cdot 1$	$\mid-0 \cdot 1$	$1-03$	-04	-0.1	+03	$+0.5$	$+0 \cdot 3$	0	-0.5	\|-0.4	-0.1	+0.2	+0.5	+0.2	-0.1	-0.1	-0.1	-0.2	$-0 \cdots-0.1$	-0.2

Summer.

Hourly-Means of Horizontal Force in C. G. S. Units (Corrected for temperature) at Toungoo from the selected quiet days in 1909.

Hoars.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.	Mears.

Months.	γ	γ	γ	γ	γ		γ	γ	${ }^{\gamma}$	γ	γ	γ	γ	γ	γ	7	${ }^{2}$	γ	γ	γ	γ	γ	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ
Januery	733	734	736	737	739	740	743	747	762	760	772	770	767	763	755	748	742	742	741	741	742	741	741	741	745	747
February	748	747	749	749	747	750	750	755	766	777	784	788	788	779	769	760	756	752	754	750	747	748	747	751	553	759
March.	738	739	742	741	741	741	744	746	755	768	781	791	782	785	772	761	750	744	745	744	742	741	742	742	744	754
October	728	724	7ะ5	725	729	730	729	726	732	742	754	767	768	762	750	740	735	:33	727	724	725	724	725	727	734	735
No:rember	750	761	760	760	762	763	765	72	789	794	801	805	803	791	783	777	771	769	768	768	765	764	764	766	766	774
December	761	762	765	769	770	769	769	775	782	792	799	801	801	795	781	777	77^{2}	770	767	769	770	769	768	769	768	776
Means.	744	745	713	717	748	749		754	70°	772	783	787	787	779	709		754	753	750	749	749	743	748	749	752	758

Summer.

April .	782	762	762	763	764	765	766	767	776	793	810	819	816	811	798	785	774	764	762	761	761	780	761	763	764	776
3 ay	702	761	702	762	763	762	763	768	777	789	803	811	812	805	795	785	774	767	762	758	750	763	763	762	763	774
Jone	763	764	725	767	757	769	771	775	783	790	796	801	804	803	7.17	784	778	768	767	769	769	769	769	768	768	777
July	765	7i9	769	768	767	768	769	778	783	788	794	799	780	799	794	785	778	770	765	765	766	768	768	750	772	777
Ausust	772	773	772	77.1	775	775	776	779	787	791	800	802	803	799	793	784	776	770	770	771	760	770	772	772	776	780
8eptember	758	759	753	760	761	763	762	758	700	767	778	783	788	. 787	782	772	767	764	763	765	758	757	757	758	762	7 6 6
Means.	764	765	7 C 5	763	766	767	768	771	778	786	797	803	804	801	793	783	774	767	765	765	764	7	765	766	768	775

Hours.	Mid.	1	3	3	4	5	6	7	θ	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.

Winter,

Mioaths.	γ	γ	γ	γ	$\boldsymbol{\gamma}$	γ	γ	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	γ	γ	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma} \boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	γ
January	-14	-13	-11	-10	-8	-7	-4	0	$+5$	+13	+25	$+23$	+ 30	$+16$	+8	+1	-5	-5	-6 -6	-5	-6	-6	-6	-2
Fibruary	-13	-12	-11	-10	-12	-9	-9	-4	+7	+18	$+25$	+20	+29	$+20$	$+10$	+1	-3	-7	-5 -9	-12	- 11	-12	-8	-6
March	-16	-15	-12	-13	-13	-13	-10	-8	+1	+14	$+27$	$+37$	$+38$	+3I	$+18$	+7	-4	-10	$-9:-10$	-12	-13	-12	-12	-10
October	-7	-11	-10	-10	-6	-5	-6	-9	-3	+7	+19	+32	+34	+27	+15	+5	-0	-2	-8 -11	-10	-11	-10	-8	-1
November	-18	-13	-14	-14	-12	-11	-9	-2	+8	+20	+97	+31	$+29$	+17	$+9$	+3	-3	-5	-6 -6	-9	-19	-10	-8	-8
Deceraber	-15	-14	-11	-7	-6	-7	-7	-1	$+6$	+16	+23	+25	+25	+19	$+8$	+1	-4	-6	-9 -7	-6	-7	-8	-7	-8
Means.	-14	-13	-12	-11	-10	-9	-8	-4	+4	+14	+26	+20	+29	+21	+11	+3	-4	\| $-6 \mid$	$-8\|-9\|$	-9	-10	-10	-9	-6

Summer.

Nots.-When theaign is \pm the Horizontal Force is grenter thinn the mean.

Hourly Means of Verical Force in C. G. S. Units (Corrected for temperature) at Toungoo from the selected quiet days in 1909.

Winter.

$160 \cdot 10+$																										
Modths. Janaary	$\gamma$$463$	$\begin{gathered} \gamma \\ 463 \end{gathered}$	γ	γ	γ	$\boldsymbol{\gamma}$	γ	γ	γ	γ	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	7										
			463	462	462	462	463	462	463	459	452	448	449	451	454	456	461	463	463	464	464	464	464	465	465	460
Felruary	462	462	462	462	463	461	460	459	4.51	452	446	448	455	461	464	485	462	458	451	459	- 457	457	458	458	'459	458
March	471	471	471	470	470	470	472	472	468	458	450	447	450	454	46:)	468	468	466	466	468	469	470	470	471	472	465
Octuber	487	497	488	487	487	487	490	489	481	473	466	468	468	476	482	484	483	481	483	484	485	485	487	488	487	482
November	487	48%	496	486	486	487	486	488	486	479	477	475	473	475	474	474	476	478	481	481	48.2	482	483	484	484	481
December	490	490	491'	489	489	489	490	489	490	490	487	485	485	484	486	489	490	489	489	490	491	491	492	492	492	489
Means	477	477	477	176	470	476	477	477	474	469	463	461	463	467	470	473	473	473	473	474	475	475	476	476	477	473

Summer.

April .	471	471	471	47 u	470	470	474	474	407	455	448	445	453	462	468	472	475	472	408	468	471	478.	472	473	473	467.
May .	482	481	481	481	481	4.82	486	495	480	471	404	465	465	470	475	478	480	479	4.77	475	475	477	478	4.78	478	475
June .	485	485	485	485	485	486	489	488	487	478	47	4.74	473	476	480	483	484	$48 \pm$	483	482	483	484	484	481	485	483
July -	478	$4: 8$	478	4.77	477	478	480	4.79	474	4.68	467	465	463	482	464	468	471	474	476	472	473	474	474	475	475	478
Aliguat	483	483	48.3	492	482	481	490	486	4,76	466	458	457	466	472	476	481	485	486	483	483	485	485	485	485	485	479
Siplember	485	456	485	485	485	485	480	486	475	467	461	460	468	477	484	487	486	484	482	483	484	485	486	486	486	481
${ }_{*}^{\text {Heana }}$	491	481	481	480.	480	. 481	485	483	477	468	462	461	465	470	475	478	450	480	478	477	479	480	480	480	480	477

Diurnal Inequality of the Tertical Force at Toungoo as deduced from the preceding Table.

Eours.	Mid.	1	${ }^{2}$	${ }^{3}$	4	5	${ }^{6}$	7	\&	:	${ }_{10}$	11	Noon.	13	14	15	${ }^{16}$	17	18	19	${ }_{2}$	${ }^{21}$	22	${ }^{23}$	mid.	
Winter.																										
Morths.																										
Ja:marg	+3	+3	+3	+2	+2	+2	+3	+2	+2	-1	-8	-12	-11	-9	-6	-4	+1	+3	+3	+4	+4	+4	+4	+ 5	+5	
Feiruary	+ +	+ ${ }^{\prime}$	++	+4	+4	+3	+2	+1	${ }^{-1}$	-6	-12	-12	-3	+3	+6	+7	+4	0	-1	+1	-1	-1	0	0	+1	
Marab	+6	+0	+6	+5	+5	+5	+7	+7	+3	-7	-15	-18	-15	-11	-5	+3	+3	+1	+1	+3	+1	+5	+5	+6	+7	
Oitober	+5	$+5$	+6	+5	+5	+5	+8	+7	${ }^{-1}$	-9	-16	-16	-14	-6	0	+2	+1	-1	+1	+2	+3	+3	+5	+6	+5	
Norembur	+6	+5	+5	+5	+5	+6	+5	+7	+	-2	-4	-6	-8	-6	-7	-7	-5	-3	0	0	+1	+1	+2	+3	+3	
December	+1	+1	+1	0	+0	0	+1	0	+1	+1	-2	-4	-4	-5	-3	0	+1	0	0	+1	+2	+9	+3	+3	+3	
${ }^{\text {Messs }}$	+	+1	+ ${ }^{+}$	+3	+3	+3	+ 4	+4	+1	-4	-10	\|-12		-10	-6	-3	0	0	0	0	+1	+2	+2	+3	+3	+4
Summer.																										
4 tril	+4	+1	+	+3	+3	+3	+ 7	+7		-12	-19	-22	-14	- 5	+1	+	+8	+5	+1	+2	${ }^{+4}$	${ }^{5}$	+ 5		+6	
$\mathrm{Na}_{\text {a }}$	+5	+4	+4	+	+	+5	+9	+8	+3	-6	-13	-13	-13	-7	-2	+1	+3	+2	0	-2	-2	0	+1	+1	+1	
Juna	+2	+2	+2	+2	+2	+3	+6	+8	+4	-5	-9	-9	-10	-7	-3	-	+1	+1	0	-1	0	+1	+1	+1	+2	
July	+6	+6	+6	+5	+5	+6	+8	+7	+2	-4	-5	-7	-9	-10	-8	-4	-1	+2	+2	0	+1	+2	+2	+3	+3	
Augnt.	+4	+4	+	+3	+3	+5	+11	+7	-3	-13	-21	-22	-13	-7	-3	+2	+6	+7	+	+4	+6	+6	+6	+6	+6	
Septermber	+	+5	+4	+ ${ }^{+}$	+4	+4	+8	+5	-6	-14	$\|-20\|$	-21	-13	- 4	+3	+6	+5	+3	+1	+2	+3	+4	+5	+5	+5	
Henns	+4	+4	+1	+3	+3	+4	+8	+6	0	-9	-15	-10	-12	$7!$	${ }^{2}$	+1	+3	+3	+1	0	+2	+3		+3	+3	

Vol. I.]
Hourly Means of the Dip as determined at Toungoo from the selected quiet days in 1909.

Hoara.
Mid.

Diurnal Inequality of the Dip at Toungoo as deduced from the preceding Table.

Vol. I.]
Hourly Meansoof the Declination as determinen at Rodaikanal from the selected quiet days in 1909.

Hoars.	Mid.	1	2	3	4	5	6	7	B	9	10	11	Noon.	13	14	15	16	17	18	19	90	21	22	23	Mid.	Meang.
$\mathrm{W} \mathrm{O}^{\circ}+\quad$ Wint																										
Moyith,	,			,												,				,		,				
Janaary	478	47.9	47.9	48.0	$48 \cdot 1$	48.2	48.5	48.7	$48 \cdot 4$	48.0	47.7	47.5	47.8	47.7	47.9	47.7	47.7	48.0	48.0	47.7	47.7	$47 \cdot 9$	$4 \% .3$	47.9	479	47.9
Febraary	48.2	48.2	481	48.2	483	485	48.8	48.9	$40 \cdot 2$	49.0	49.1	49.1	48\%	47.6	17.1	470	47.0	477	48-2	480	481	48.2	$48 \cdot 3$	48.3	$48 \cdot 3$	$48 \cdot 2$
March	487	48.7	48\%	48.8	48.8	$48 \cdot 9$	489	48.5	48.4	48.2	48.1	48.5	$48 \cdot 9$	$40 \cdot 0$	$48 \cdot 6$	481	47.7		484	48.5	$45 \cdot 6$	47.7	49.7	487	${ }^{4} 4.7$	48.5
October	51.2	51.9	51.2	51.3	$51 \cdot 4$	51.4	51.3	51.0	$50 \cdot 8$	51.2	517	52.1	52.0	51.6	51.3	$50 \cdot 6$	50.7	51.0	$51 \cdot 1$	511	51.2	513	51.3	513	$51 \cdot 3$	51.3
November	51.6	51.6	${ }^{51} 1.6$	51.7	51.9	52.0	6こ2	52.4	52.0	51.7	51.9	62.0	61.8	51.2	50.8	50.9	51.3	517	51.8	51.7	51.7	51.8	51.8	51.8	517	517
December	52.0	52.0	$52 \cdot 1$	523	52.4	52.6	62.7	53.1	$52 \cdot 8$	62. 2	52.1	51.8	51.8	51.6	51.5	51.8	517	517	530	51.8	51.9	520	52.1	52.1	521	521
Means	$49 \cdot 9$	$40 \cdot 9$	49.9	$50 \cdot 1$	60.2	50) 3	504	50.4	50.3	60\%	50.1	50.2	$50 \cdot 1$	498	49.5	$48 \cdot 4$	49.4	497	49.9	$49 \cdot 8$	49.9	50.0	50.0	500	500	50.0

Summer.																										
April	40.2	$40 \cdot 2$	$49 \cdot 2$	492	49.4	$43 \cdot 4$	49.2	48.7	487	$48 \cdot 9$	$49 \cdot 4$	$49 \cdot 8$	50.3	50.4	50.0	$40 \cdot 3$	$48 \cdot 8$	48.7	490	49.4	$49 \cdot 6$	496	4935	49.4	49.6	493
May	$49 \cdot 6$	49.6	49.5	49 \%	49.5	$49 \cdot 5$	490	48.4	48.5	493	$50 \cdot 2$	$50 \cdot 9$	51.1	$50 \cdot 9$	50.4	51.0	49.7	493	$49 \cdot 3$	49.9	50.2	50.2	501	$50 \cdot 0$	49.7	49.8
June	$50 \cdot 1$	50:0	$48 \cdot 9$	$49 \cdot 8$	49.8	498	49.5	$48 \cdot 8$	$48 \cdot 8$	49.2	$60 \cdot 1$	509	51.1	51.0	60.6	512	$50 \cdot 1$	$50 \cdot 1$	50.3	505	$50 \cdot 6$	$50 \cdot 6$	505	60\%	$50 \cdot 3$	50.1
Juiy	$50 \cdot 3$	503	50.2	$50 \cdot 2$	501	$50 \cdot 1$	497	40.2	$40 \cdot 2$	49.8	$50 \cdot 5$	$50 \cdot 9$	509	60.7	50.7	50.5	$50 \cdot 1$	510	$50 \cdot 1$	50.7	$50 \cdot 8$	$50 \cdot$	507	50.7	50.6	50.3
August	50.8	507	50.7	007	50.7	506	496	48.4	$48 \cdot 4$	49.1	50.7	62.0	52.7	52.7	52.2	$\checkmark 516$	51.0	$50 \cdot 6$	505	50.7	50.8	$50 \cdot 9$	50.8	51.8	$50 \cdot 8$	50.7
$\mathrm{Sej}_{\mathrm{i}}$ termber	51.0	60.9	50.8	50.8	50.8	008	502	$40 \cdot 2$	493	502	51.0	51.7	$52 \cdot 3$	52.1	51.3	507	50.4	50.5	509	51.2	51.2	$51 \cdot 2$	51.2	51.2	51.1	50.9
Myeans	$50 \cdot 2$	501	$50 \cdot 1$	50.0	50.1	600	49%	$48 \cdot 3$	498	49.4	50.3	51.0	51.4	51.3	50.9	50.4	50世)	49.9	50.0	50.4	$50 \cdot 5$	$50 \cdot 6$	$50 \cdot 5$	$50 \cdot 4$	50.3	50.2

Diurnal Irequality of the Declination at Kodaikanal as deduced from the preceding Table.

Hoarr.	Mid ;	1	${ }^{2}$	3		- 5	6 .	. 7		9	10	11	Noon.	13	14	15	16	17	18	19	${ }^{20}$	21	¢2	${ }^{23}$	Mid.
Winter.																									
Monthe.																									
Janara	+0.1	0	0	-0.1	-0.2	-0.3	-0.6	-0.8	-0.5	-0.1	+0.2	+0.4	+01	+02	0	+0.2	+0.2	-0.1	-0.1	+0.2	+0.2	0	0	0	
Fcbraary		0	+0.1	0		-0.3	-0.6	-0.7	-1.0	-0.8	-0.9	0.9	-0.3	+0.6	+1.1	+1.2	+12	+0.5	0	+0.2	+0.1	0	-0.1	-0.1	-0.1
Narcb .	-0.2	-0.2	-0.2	-0,3	-03	-0.4	-0.4	0	+0.1	+0.3	+0.4	0	-0.4	-0.5	-0.1	+0.4	+0.8	+0.6	$+0.1$	0	-0.1	-0.2	-0.2	-0.2	-0.2
Octoer	+0.1	+0.1	+0.1	0	-0.1	-0.1	0	+ +3	+0.5	+0.1	-0.4	-0.8	-0.7	$-0 \cdot 3$	+0.1	+0.7	+0.6	$+0.3$	$+0.2$	+0.9	$+0.1$	0		0	0
Norember		0.1	0.1		-0.2	-0.3	-0.5	-0.7	-0.3	0	-0.2	-0.3	-0.1	+0.5	+0.8	+08	+0.4	0	-0.1	0	0	-0.1	-0.1	-0.1	0
Dicember	+01	+0.1	0	$0 \cdot 2$	-0.3	-05	-0.6	-10	-0.7	-0.1	0	+0.3	+0.3	$\div 0.5$	+0.8	+0.3	+0.4	+0.4	+0.1	+0.3	$+0 \cdot 2$	+	0	0	0
Mreans	+0.1	+01	+0.1	-0.1	-0.2	-0.3	-0.4	-0.4	-0.3	-0.1	-0.1	-0.2	-0.1	+0.2	+0.5	+0.6	-0.6	$\overline{+03}$	+0.1	+0.2	+0.1	0	0	0	0

April	+01	$+0.1$	+0.1	+0.1	-0.1	-0.1	+0.1	+0.8	$+0.6$	+0.4	-0.1	-0.5	-0.9	-1.1	-0.7	0	+0.5	+0.6	3	-01	3	. 3	-0.2	-0.1	
May	+0.2	+0	+0:	+0:3	+03	+0.3	+0.8	+1.4	$+1 \cdot 3$	+115	-0.4	-1.1	$-1 \cdot 3$	-1.1	-0.6	-0.2	$+0.1$	+0.5	+0.5	-0.1	-0.4	-0.4	-0.3	-02	$+0.1$
Jnne	0	+0.2	+0.2	+1)3	$+0.3$	+0.3	+0.6	+1/3	+1.3	+0.9	0	-0.8	-1.0	-0.9	-0.5	-0	0	0	-0.2	-	-0	-0.5	-0	-0	-0.
July	0	0	+0.1	+0.1	+0.2	+0.2	+0.6	+1.1	+1.1	+0.5	-0.2	-0.6	-0.6	-0.4	-0.4	-0.2	$+0 \cdot 2$	+0.3	+0.2	-0.4	-0.5	-0.6	-0.4	-0.4	-03
August	0.1	0		0	0	+0.1	$1 \cdot 1$	+2.3	+23	+1.6	0	$-1 \cdot 3$	-2.0	-2.0	-1.5	-0.9	-0.3	+0.1	$+0.2$	0	-0.1	-0.2	-0	-0	-0.1
Fe: tenter	. 0.1	0	01	+0.1	+01	+0.1	+0.7	$+1.7$	+1.6	+0\%	-0.1	-0.8	-14	-12	-04	+0.2	+0.5	+0.1	0	-0.3	-0.3	-03	-0.3	-0:3	0.2
M. $\mathrm{ang}^{\text {a }}$				+0.2				+1/4				-0.8	-1	-1.1	-07	-02	+0.2	+0.3	+0.2	-0.2	-0.3	-0.4	-03	-0.2	

Dinrinal Inequality of the Horizontal Force at Kodaikanal as deduced from the preceding Table.

Ноиr.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noor.	13	14	15	16	17	${ }^{18}$	19	20	${ }^{21}$	${ }^{2}$	${ }^{23}$	Mid.
Winter,																									
										γ		7	γ	γ	${ }^{7}$	γ	γ	7	γ	γ	γ		\%	γ	
Months.	${ }^{\gamma}$					+64	+48	+34	+14	-2	-11	-13	-12	-10	-12	-13	-13	-11	-12						
Janasary	-22	-21	-20	-19	-19	-19	-19	-13	+ 7	+37	+49	+64	+48	+34	+14	--17	-17	-7	-8	-12	-14	-18	-15	-15	-18
Febrary	-10	-17	-18	-19	-19	-19	-19	-7	+15	+46	+66	+70	+52		0 +22	-17	-17 -12	-11	--10	-17	-20	-20	-23	-23	-24
March	-27	-24	-27	-25	-25	-24	-26	-20	+2	+37	+66	+80	+71	+51	+22	0	-12	-							
October	-22	-23	-22	-18	-19	-21	-22	-12	+13	+44	+67	+73	+57	+32	+10	0	-5	-9	-13	-19	-22	-23	-22		
	-16	-17	-17	-16	-17	-16	-13	0	+20	+39	+45	+41	+26	+16	+10	+ 4	+1	-4	-9	${ }^{-13}$	${ }^{-16}$	-15	-15	-15	-14
December	-16		-15	-15	-16	-17	-14	-7	+ 8	+29	+30		+32	+27	+19	+10	-1	-7	- 9	-8	-10	-11	-11	-19	-12
December	-19	-20	-16																						
Heans	-21	-20	-20	-19	-19	-20	-19	-10	+11	+37	+54	+58	$+47$	+30	+12	- 1	-8	-9	-10	-13	--16	-17	-17	-16	-16

Hourly Means of Vertical Forcs in C．G．S．Units（Corrected for temperature）at Kodaikanal from the selecled quiet days in 1909.

Honrs．	${ }_{\text {Mid．}}$	1	2	3	4	5	6	7	${ }^{8}$	9	10	11	Noon	13	14	15	16	${ }^{17}$	18	19	20	21	$\stackrel{2}{2}$	23		Iteana．
02000＋Winter．																										
Hionths．	γ	7	γ	7	γ	γ																				
Janarry	365	365	365	365	365	365	365	364	369	351	348	343	341	339	337	343	350	355	358	360	360	361	363	364	364	356
February	370	370	370	370	370	370	370	371	369	365	355	351	355	360	363	366	367	364	362	365	365	365	367	368	367	365
Marcb	370	372	370	37.	371	372	373	373	370	366	457	349	348	346	351	355	362	362	365	367	369	370	371	371	372	365
October	409	410	410	411	410	410	413	411	406	395	336	383	386	388	392	397	397	397	403	405	408	407	410	412	411	402
November	423	423	122		422	423	422	423	422	419	417	411	414	415	413	410	408	406	411	413	414	415	416	416	417	417
December	423	495	426		424	424	424	425	426	424	426	423	423	419	415	416	419	419	422	424	425	425	425	426	428	493
Meara	394	394	${ }^{394}$	39¢	394	${ }^{391}$	395	385	393	387	392	377	378	378	379	381	384	384	387	389	390	391	392	393	393	389

造	\％
	\％
	莮
	命
	¢
	榙
	\％
	\％
	茄
	\％
	\％
	\％
㬰	区
	占
	$\stackrel{9}{0}$
	骨
	告
遇	\％${ }_{\text {\％}}$
	\％\％
	${ }_{\circ}^{\circ}$
	\％
	哭
	\％
骨	\％
骨	\％
	䍖

Diurnal Inequality of the Fertical Force at Kodaitianal as deduced from the precedting Table.

Ной.	Mid.	1	${ }^{2}$	${ }^{3}$	4	5	6	7	${ }^{8}$	9	10	${ }^{11}$	Noon.	13	14	15	16	${ }^{17}$	19	19	20	21	22	23	mid.
Winter.																									
Mooths.	y	7	γ	7	γ	r	r	γ	γ	${ }^{7}$	γ	${ }^{7}$	γ												
January	+ +	+9	+9	+9	+9	+9	+9	+8	+6	-5	-9	-13	-15	-17	-10	-13	-6	-1	+2	+4	+4	+5	+7	+8	+8
Febrary	+5	+5	+ 5	+5	+ 5	+ 5	+5	+8	+4	0	-10	-14	-10	-5	-2	+1	+2	-1	-3	0	0	0	+2	+3	+2
		+7	+5				+8	+8	+5	+1	-8	-16	-19	-19	-14	-10	-3	-3	0	+2	+4	+5	+6	+6	+7
											-16	-19	-16	-14	-10	-5	-5	-5	+1	+3	+4	+5	+8	+10	+9
October	+7	+8	+8	+9	+8	+8	+11	+9	+4	-7													-1	-1	0
Norember	+6	+5	+5	+6	+5	+6	+5	+	+5	+2		-6	-3	-2	-4	-7	-11	-11	-6	-4	-3	-2			
December	+3	+2	+3	+2	+1	+1	+1	+2	+3	+1	+3	0		-4	-8	--7	-4	-4	-1	+1	+2	+2	+2	+3	+3
Veans	+6	$+6$	+6	${ }^{+6}$	+6	+6	+7	+7	+5	-1	-6	-11	-10	-10	-9	-7	-4	-4	-1	+1	+2	+3	+4	+5	+ 5

Hourly Means of the Dip as determined at Kodaikanal from the selected quiet days in 1909.

Winter.

$\mathrm{N} \cdot 3^{\circ}+$																										
Months.	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,
January	370	37.0	37.0	37.0	37.0	37.0	37.0	36.8	36.5	$35 \cdot 4$	350	345	34.4	34.3	34.2	349	35.6	360	$36 \cdot 3$	36.5	36.5	36.6	36.8	36.8	36.8	36.1
February	37.4	37.4	37-4	37.4	37.4	37.4	374	374	$37 \cdot 1$	30̇ 6	355	351	35.6	36.2	$36 \cdot 6$	37.0	$37 \cdot 1$	36.8	36.6	$36 \cdot 9$	36.9	36.9	371	37.2	371	$36 \cdot 0$
March	37.4	37.6	37-1	37.6	37.5	37.6	37.7	37.7	37.3	367	$35 \cdot 7$	$34 \cdot 9$	3477	34.8	:5:4	35.9	36.6	36.6	96.9	$37 \cdot 1$	57.3	37.4	37-5	37.5	97.6	36-8
October	41.0	$41 \cdot 1$	$41 \cdot 1$	41.2	41.1	41.1	41.4	$41 \cdot 2$	40.6	394	$38 \cdot 4$	381	$38 \cdot 5$	38.8	393	$39 \cdot 8$	$39 \cdot 8$	399	404	407	408	$40 \cdot 9$	41-1	$41 \cdot 3$	$41 \cdot 2$	$40 \cdot 3$
November	42.2	$4 \cdot 1$	42•1	$42 \cdot 2$	42•1	$4 \geq 2$	$4 \% 0$	421	41.8	41.5	41.3	407	41.1	41.2	$41 \cdot 1$	40.9	$40 \cdot 5$	405	41.0	$41 \cdot 2$	41.3	41.4	41.5	41.5	$41 \cdot 6$	415
Decemter	424	42.3	42.4	423	$42 \cdot 2$	$42 \cdot 2$	42.2	423	423	$42 \cdot 0$	421	$41 \cdot 8$	41.9	41.5	41.2	$41 \cdot 3$	41.7	41.7	42.0	$42 \cdot 2$	$42 \cdot 3$	$42 \cdot 3$	423	$42 \cdot 4$	42.4	$42 \cdot 1$
Means	39.6	396	39.6	$38 \cdot 6$	$39 \cdot 6$	39.6	$39 \cdot 6$	396	$39 \cdot 3$	38.6	38.0	37.5	37.7	$37 \cdot 8$	38.0	$38 \cdot 3$	38.6	$38 \cdot 6$	38.9	$39 \cdot 1$	$39 \cdot 2$	$39 \cdot 3$	39.4	39.5	39.5	$39 \cdot 0$

Summer.

Diurnal Inequality of the Dip at Kodaikanal as deduced from the preceding Table.

Hoara	上id.	1	2	s	4	5	6	7	8	9	10	${ }^{11}$	Noon.	13	14	15	16	17	18	10	20	21	22	${ }^{23}$	Mid.
Winter.																									
Nontts.	,	,	,	,				,	,			,		,	,			,		'	,	,	,		
- Janualy	+0.9	+0.9	+09	$+09$	+0.9	+0.9	+0.8	+0.7	+0.4	-0.7	-1.1	-1.6	-1.7	-18	-19	-12	-0.5	-0.1	+02	+0.4	+0.4	+0.5	+0.7	+0.7	+0.7
February	+0.5	+0.5	+0.5	+0.5	+0.5	+0.5	+0.5	+0.5	+0.2	-0.3	-1.4	-1.8	-1^{3}	-0.7	-0.3	+0.1	+0.2	-0.1	-0.3	0	0	0	+0.2	+0.3	$+0.2$
March	+0.6	+0.8	+0.6	$+0.8$	$+0.7$	+0.8	+0.8	+0.9	+6.5	-0.1	-11	-19	-21	-2.0	-1.4	-0.9	-0.2	-0.2	+0.1	+0.3	+0.5	+0.6	+0.7	+07	+0.8
October.	+07	+0.8	+08	+0.9	+08	+0.8	+11	$+0 \cdot 9$	+0.3	-0.9	-1.9	-2.2	-1.8	-15	-10	-0.5	-0.6	-0.4	+0.1	+0.4	+0.5	+0.6	+0.8	+1.0	+0.9
Norember	+0.7	+0.6	+0\%	+0.7	+0.6	+0.7	+0.5	+0.6	+0.3	0	-0.3	-0.8	-0.4	-0.3	-0.4	-0.6	-1.0	-10	-0.5	-0.3	-0.2	-0.1	0	0	+0.1
December	+0.3	+0.2	+0.3	+0.2	+0.1	+0.1	+0.1	+0.2	+0.2	-0.1	0	-0.3	-0.2	-0.6	-0.8	-0.8	-0.4	-0.4	-0.1	+0.1	+0.2	+0.2	+0.2	+0.3	+0.3
Meang	+0.6	+10)	+0.6	+0.8	+0.6	+06	+0.6	+0.6	+0.3	-0.4	-1.0	-1.	-1.3	-12	-10	-0.7	-0.4	-0.4	-0.1	+0.1	+0.2	$+0.3$	$+0.4$	+0.5	+0.5

Summer.																								
April	- $\cdot+0.9$	+0.9	$+0 \cdot 8$	$+\infty 7$	+0-7	+0.8	+1.0	+1.2	+0.5	-0.2	-1.8	$-2.1-2.4$	-1.9	-1.0	-0.1	$+0 \cdot 3$	$+0.2$	-0.2	-0\%	0	0	+0.2	$+03$	+0.4
May	- +0.6	+0.5	+0.5	$+0.5$	+0.5	+0.6	$+0.9$	+1.1	$+0.6$	-0.2	$-1 \cdot 0$	$-1.8-2.2$	-1.8	$-1 \cdot 2$	-0.6	+0.3	$+0 \cdot 6$	$+0.4$	$+0.3$	+0.4	$+0.5$	$+0.5$	$+07$	$+0.8$
June	. +0.5	+0.6	+0.5	+0.	+0.4	$+0.4$	$+0.6$	$+0.6$	+0.3	-0.3	-0.5	$-0.8-1.2$	-0.8	-0.5	-0.3	-0.1	-0.3	-0.2	-0.2	-0.1	0	$+0 \cdot 1$	$+0.1$	+0.2
July .	- 0	0	-0.1	-0.1	-0.1	0	$+0.2$	$+0.3$	$+0.1$	-0.2	-0.1	$-0.1-0.2$	$-0 \cdot 1$	-0.3	0	+0.1	$+0 \cdot 2$	0	-0.1	0	+0.2	$+0 \cdot 3$	$+0.3$	$+0 \cdot 4$
August.	.+0.8	$+0.9$	$+1.0$	+1.0	$+11$	$+1 \cdot 1$	+1.4	+1•1	$+0.3$	$-0 \cdot 9$	-2.0	$\mid-2.8$-24	-1.8	-1.0	-0.6	-0.1	$+0.2$	$+0 \cdot 3$	$+0.4$	$+0.5$	+0.7	$+0.7$	$+08$	$+0.9$
September	+1.0	$+1 \cdot 0$	+1.0	$+1 \cdot 1$	+1•1	$+10$	+13	$+1 \cdot 1$	-6.1	$-1 \cdot 1$	-1.9	-2.8-25	-1.9	-1.0	-0.3	+0.2	+0.2	$+0.1$	$+0.2$	$+0 \cdot 3$	$+0.6$	$+0.7$	+08	$+0.9$
Means	$\cdot+0 \cdot 6$	+0. 6	$+0.6$	$+0.6$	+0.6	+0.6	+0.9	+0.9	$+0 \cdot 3$	-0.5	$-1 \cdot 1$	$-1.7,-1.8$	$-1 \cdot 4$	-0.8	-0.3	+0.1	$+0.2$	$+0 \cdot 1$	$+0 \cdot 1$	$+0.2$	+0.3	+0.4	+0.5	$+0.6$

Sbstract showing approximate magnetic values at stations observed at by No． 18 Party during season 1909－10．

Field Stations．

Serial No．	Name of station．	Latitude．	Longitude．	Dip．	Declination．	Horizontal Force．	Remaris．
		－．	－＂＂	－	0 －	C．G．S．	
1262	Nushki ．	293240	0620	4213	E 228	3246	
1203	Kurdagap	294530	662610	4233	－ 252	－3239	
1264	Sastung Road	295240	665030	4249	＂ 30	－3238	
1265	Ramnagar	292330	79720	4228	＂ 217	－3371	
1206	Lansdowno	294940	784120	433	＂ 228	3351	
1267	Chaumasu	29540	78440	438	， 230	－3352	
1208	Pokhra．	295450	785540	439	， 231	$\cdot 3353$	
1269	Saraikhet	295310	$70 \quad 440$	437	， 230	－3354	
1270	Maei	29490	791650	432	＂ 220	$\cdot 3342$	
1271	Ranishet	293850	79260	4249	， 222	． 3364	
1272	Almora ．	293550	793910	4241	， 223	3367	
1273	Mournala	292710	79470	4228	＂ 221	＊3375	
1274	Lohaghat	292420	$80 \quad 530$	4227	＂ 217	． 3381	$\stackrel{3}{3}$
1275	Pithoragarb	29350	801230	4235	－ 219	－3383	8
1276	Askote	294540	801930	4258	＂ 227	． 3372	5
1277	Nachani	295420	$80 \quad 940$	4311	， 229	$\cdot 3365$	，
1278	Kofkote	$29 \quad 570$	－ 795340	4314	＂ 229	$\cdot 3365$	皃
1279	Baijnath	295440	793650	438	＂ 222	$\cdot 3360$	寠
1280	Simli	301350	791520	4341	＂ 236	$\cdot 3340$	8
1281	Dungripant	301410	78520	4342	＂ 234	－3334	滖
1282	Tohri	302310	782840	4355	＂ 238	－3325	－
1283	Nahan	303330	771750	443	－ 245	－3312	
1284	Abiana ．	31530	763310	4519	－ 269	$\cdot 3281$	
1285	Bubhor	312430	7622×20	4522	， 35	－3263	
1286	Hamirpur	314110	763120	4562	－ 32	$\cdot 3249$	
1287	Galma ：	31300	766230	4547	， 31	－3248	
1288	Pangna	312310	77720	4546	＂ 32	$\cdot 3277$	
1289	Sema or Semu	311150	765530	457	＂ 268	$\cdot 3265$	，
1290	Jutogh ．	31620	7760	450	＂ 261	－3274	
1201	Bagond	$31 \quad 610$	772730	45 c，	－ 241	－3283	
1202	Hetlsoti	31880	774450	4458	－ 250	－3285	－
1203	Sungri ．	311840	774160	4522	， 252	－3270	
1294	Rampur	312650	77380	4534	＂ 240	3262	
1295	Kotgarh	311840	772850	4522	＂ 240	－3275	
1296	Kot	31310	772510	4543	－ 261	$\cdot 3255$	
1297	Manglaur	31400	771750	462	＂ 267	－3240	
1298	Bajaura．	315060	$77 \quad 950$	4611	＂ 32	3290	
1290	Urla	316520	$76 \quad 5310$	4617		$\cdot 3229$	
1300	Palampur	32720	$7032 \leq 0$	4041	－ 30	－3211	
1301	Dharmana	32120	761930	4047	1． 310	$\cdot 3904$	，＇

Abstract showing approximate magnetic values at stations observed at by No． 18 Party during season 1909－10－continued．

Field Stations－continued．

Serial No．	Name of station．	Latitude．	Longitude．	Dip．	Declination．	Horizontal Force．	Agmaris．
		－，＊	－，＂	－	－	C．G．S．	
1302	Dera－Gopipur．	315250	761230	4614	E 315	3228	
1303	Hoshiarpur	313150	755420	4531	， 33	3240	
1304	Khatema	285450	795810	4141	＂ 29	＇3416	
1305	Gulbarga	171850	764010	1949	W 0	3762	
1306	Aland	173330	763450	210	E 19	－3872	
1306（a）	Aland（a）	173250	763440	2035	， 113	－3835	
1307	Talmud	174920	764520	1956	W 0 21	－3777	
1308	Bhálki	$\begin{array}{lll}18 & 210\end{array}$	771140	2049	E 015	－3752	
－ 1309	Kandhar	185140	771130	239	， 012	3704	
1310	Rabiri	195940	761720	2514	， 029	$\cdot 3650$	
1311	Sareuti ．．	195950	762950	2528	＂ 023	－3660	$\stackrel{\text { 官 }}{ }$
1312	Kowotah	194950	765010	$25 \quad 3$	， 020	$\cdot 3690$	$\stackrel{0}{80}$
1313	Jaygad．	171750	731320	207	W 01	3723	4
1314	Moosa－Kazi－Bandar	163710	73200	1827	， 026	$\cdot 3749$	$\stackrel{y}{2}$
.1315	Malvan．	$\begin{array}{lll}16 & 3 & 30\end{array}$	732720	17 6	＂） 026	$\cdot 3744$	$\stackrel{\oplus}{\square}$
1316	Honávar	141640	742630	131	－ 044	$\cdot 3762$	号
1317	Chundauver	142340	$7429 \quad 0$	1325	＂ 026	$\cdot 3764$	\％
1318	Tadri	143120	742130	1411	， 024	$\cdot 3748$	嵉
1319	Khed	185130	735320	2338	E 035	＇3697	$\begin{aligned} & \text {. } \\ & \hline \mathbf{m} \end{aligned}$
1320	Ghods	$19 \quad 310$	734950	2321	W 01	－3682	
1321	Singwa ．	$\begin{array}{lll}19 & 0 & 0\end{array}$	$74 \quad 420$	235	＂ 04	$\cdot 3703$	
1322	Naráyangaon	$19 \quad 640$	$\begin{array}{llll}73 & 58 & 10\end{array}$	2353	E 053	－3678	
1323	Jamked	103940	75390	2421	， 039	－3709	
1324	Paithan	192830	752250	2425	， 034	－3722	
1325	Miri	19170	74580	241	， 013	＇3694	
1326	Tadwale	182240	$76 \quad 310$	2421	W 17	－3660	
1327	Alote	234530	753240	332	E 0033	$\cdot 3570$	
1328	Darah	24500	$76 \quad 050$	3449	， 125	$\cdot 3541$	
1329	Siwai Madhopur	26130	76210	3648	， 141	$\cdot 3491$	
1330	Hindaun	264530	$77 \quad 210$	$38 \quad 5$	＂ 151	－3470	

Detall Survey Stations．

123 D	Gooda	243840	771850	3412	E 124	$\cdot 3542$	$\stackrel{\circ}{\sim}$
124 D	Awan	242420	$77 \quad 850$	340	＂ 042	－3550	吻
125 D	Binageon	241110	$\begin{array}{llll}77 & 2 & 0\end{array}$	3319	， 058	－3590	狋
120 D	Beoura．	23 55 0	765420	3228	＂ 115	$\cdot 3607$	$\begin{aligned} & 50 \\ & \% 0 \end{aligned}$
127 D	Pachor．	234140	764420	3218	＂ 117	$3 \mathrm{C00}$	员号
128 D	Narainghgarb	234210	77×20	3245	＂ 046	－3600	$\xrightarrow{-3}$
129 D	Borsgis	233830	772020	3111	＂ 143	－3537	江

Abstract showing approximate magnetic values at stations observed at by No. 18 Party during season 1909-10-continued.

Betail Survey Stations-c ni nued

Abstract showing approximate magnetic values at stations observed at by No. 18 Party during season 1909-10-continued.

Detail Survey Stations-concluded.

Reobserved Field Stations.

Abstract showing approximate magnetic values at staiions observed at by No. 18 Party during season 1909-10-continued.

Reobserved Field Stations-continued.

Serial No.	Name of station.	Latitude.	Longitude.	Dip.	Declination.	Horizontal Force.	Remabes
		- ,	-	-	-	C. G. S.	
139	Viramgam	$23 \quad 810$	$72 \quad 330$	3125	E 19	-3565	
143	Rajkot .	221820	704840	2940	\% 031	$\cdot 3620$	
148	Abu Road	24290	724040	3350	- 127	$\cdot 3636$	
160	Kalyán.	19150	$\begin{array}{lll}73 & 820\end{array}$	2519	W 024	3677	
170	Lonavla	184510	732420	230	E 02	3718	
171	Kirkee, site No. 2	183320	735010	2250	" 024	$\cdot 3679$	
172	Dhond .	18280	743510	224	" 036	'3710	
173	Jeur	181550	$75 \quad 940$	2145	" 02	$\cdot 3721$	
174	Darsi, site No. 2	181430	754220	2139	- 015	-3719	
175	Hotgi	173340	$76 \quad 0 \quad 20$	2022	\% 04	3743	
176	Ghangapur	172020	76360	1931	1) 06	3750	
177	Wadi	$\begin{array}{llll}17 & 3 & 0\end{array}$	77 0-0	1858	" 06	$\mathbf{8 7 6 4}$	
212	Mormugao	152420	734720	1531	W 018	$\cdot 3753$	
213	Castle Rock	15240	741850	1437	" 028	$\cdot 3818$	\%
214	Belgaum	155030	743110	1631	- 027	$\cdot 3740$	안
215	Gokak Road	16140	744440	1722	" 01	$\cdot 3769$	\%
216	Miraj	164910	743810	1911	" 015	-3776	看
217	Kolhépur	164150	741410	1811	E 07	$\cdot 3760$	日
218	Karad	171840	$74 \quad 1310$	1944	00	$\cdot 3738$	-
219	Wathar	176320	$\begin{array}{llll}74 & 810\end{array}$	218	E 011	3708	
220	Rajewadi	18230	$74 \quad 830$	2238	W 12	3693	.
221	Ahmednagar	19420	744310	2320	E 012	3707	\pm
222	Puntamba	194540	743720	2444	- 030	3670	
232	Delhi	284020	771420	4110	" 159	-3306	
260	Kavas	255220	713140	3610	" 27	3458	
287	Tokara	305050	705520	4434	, 250	-3290	
327	Tuticorin	94810	$\begin{array}{llll}78 & 9 & 0\end{array}$.	W 125	3816	
359	Chaman	305610	602520	4443	E 250	3169	*
371	Ratagaon (Vijapur)	195640	$7445 \quad 50$, 020	$370{ }^{\circ}$	
372	Aurungabad .	105130	752020	2520	" 034	3699	
373	Jálna .	105150	75630	264	" 039	3703	,
374	Satona .	102030	762130	2422	" 033	-3713	
375	Parbhani	191520	764050	244	, 048	-3747	
376	Nanded	$19 \quad 30$	771810	2413	" 03	-3700	
377	Dharmabad	185310	775130	2311	, 00	3735	
639	Datin	253840	782730	3541	, 10	$\cdot 3532$	
546	Bhilga	233110	774860	3313	1, 218	$\cdot 3560$	
608	Sangor	235050	784420	331	, 130	$\cdot 3504$	
673	Cawopere	$20 \quad 270$	80210	3727	, 142	-3000	
500	Anjli . '.	273820	796920	3934	1, 161	$\cdots 3467$	

Abstract showing approximate magnetic values at stations observed at by No． 18 Patty during season 1909－10－continued．

Reobserved Field Stations－c nitinued．

Serial No．	Name of station．	Latitude．	Longitude．	Dip．	Declination．	Horizontal Force．	
		－，	－．	－，	－，	C．G．S．	
012	Kotah ．．	251130	755140	3530	E 132	＇3524	
618	Naiakila ．	24340	771530	3360	＂ 237	$\cdot 3538$	
641	Silwáni ．．	231820	782620	3115	＂ 13	$\cdot 3660$	
348	Manchar，site No． 2	$19 \quad 0 \quad 30$	735640	2230	＂ 018	＇3691	
649	Sangamner	193420	741330	2410	＂ 016	＇3677	
650	Shergnon ．	192120	75140	2420	＂ 029	$\cdot 3708$	
653	Ter，site No． 2	181940	$76 \quad 910$	2134	W 07	$\cdot 3748$	
655	Udgir ．	182330	$\begin{array}{llll}77 & 7 & 0\end{array}$	229	E 040	$\cdot 3750$	
656	Aurad ．．	$1815 \quad 0$	772430	2151	W 032	＇3743	
－658	Rajasoor ．	174830	$77 \quad 230$	2058	E 013	＇3757	
661	Bijapur	16500	754320	1820	， 04	3737	
665	Gadeg－．	152510	753810	162	W 004	$\cdot 3741$	3
666	Alur ．．	154930	$7539 \quad 0$	1641	＂ 017	$\cdot 3780$	\％
667	Alimatti	162110	756320	1742	＂ 013	$\cdot 3764$	缶
671	Pandharpur	173940	751930	2050	E 038	$\cdot 3725$	－
－682	Kumta	142610	742450	1258	＂ 016	$\cdot 3851$	易
683	Kárwár	144730	$74 \quad 720$	1415	W 022	$\cdot 3770$	易
684	Vengurla	155130	733720	1620	＂ 012	$\cdot 3759$	\％
685	Dergad	162150	732150	1813	E 020	－3675	\％
686	＇Ratnágiri	165910	731850	1736	＂ 033	$\cdot 3762$	$\xrightarrow[\text {－}]{\text {－}}$
687	Dabhol ．	173520	7310	1949	W 0019	$\cdot 3720$	
688	Bánkot ．	175820	$73 \quad 230$	221	E． 037	$\cdot 3679$	
689	Rewadenda	183220	$7257 \quad 0$	2244	＂， 043	－3688	
702	Viziandgram	18640	83240	$\square 22.17$	W 023	$\cdot 3838$	
712	Nandyal	152820	78280	1559	， 023	$\cdot 3809$	
746	Chands	195750	791740	257	E 030	$\cdot 3740$	
761	Hingoli ．	194330	$\begin{array}{llll}77 & 9 & 0\end{array}$	2531	1） 049	$\cdot 3666$	
752	Básim ．	$20 \quad 650$	$77 \quad 820$	2641	＂ 147	－3653	
－ 753	Karanja	202830	772920	288	＂ 047	－3608	
787	Dhamtari	204240	813240	2040	， 033	$\cdot 3730$	，
779	Amraoti	20 c55 30	774550	2715	， 019	$\cdot 3647$	
－ 794	Betul ．．	215450	776340	2863	＂ 048	$\cdot 3666$	
795	Palsia	214520	77310	2839	－1 14	$\cdot 3575$	
706	Rangubali	214240	$\begin{array}{lll}77 & 820\end{array}$	2813	＂ 041	－3059	
707	Darni ．	213240	765310	282	＂ 013	－3684	
798	Jiri	211040	765050	2841	＂ 036	－3682	
709	Anjargaon	211040	771830	2720	＂ 024	$\cdot 3703$	
671	Lakscm	231540	91720	3143	＂ 053	$\cdot 3734$	
042	Sihama．	201840	815440	2011	＂ 041	$\cdot 3734$	
943	Raigarh．．	195320	82420	250	＂ 037	－ 3762	

Abstract showing approximate magnetic values at stations observed at by No． 18 Party during season 1909－10－continued．

Reonserved Field Stations－concluded．

Serial No．	Name of station．		Latitude．	Longitude．	Dip．	Deolination．	Horizontal Force．	Remaris．
			0 ，＊	－，＊		－，	C． Q .8 ．	
944	Dabgaon		10270	822440	$24 \quad 0$	E 016	3768	
045	Јеурого	－	185130	B2 3440	2250	， 018	3737	吕
948	Bobbili ．	．	183430	832110	2217	－ 00	$\cdot 3802$	号
961	Mandalny	－	215050	90880	2913	－ 034	3801	
975	Myitkyina	－	$25 \quad 2320$	972410	3013	－ 130	－3613	g
977	Bhamo	－	241530	971310	3345	， 051	－3730	相
902	Kindat ．	－	234410	94260	3248	， 051	－3725	－
1068	Prome	－	184940	951320	2245	， 023	＇3882	2
1071	Bassein	．	164620	944430	180	， 018	3918	－
1195	Moulmein	－	162940	973730	1736	， 027	－3928	\pm 。

Repeat Stations．

I	Udaipur	243533	734157	$3 \cdot 4$	E 120	－3527	
II	Karúchi．	244950	$\begin{array}{llll}67 & 2 & 2\end{array}$	$3+26$	， 139	－3454	
III	Quetta	301152	67020	4323	，， $3 \mathbf{3}$	－3222	
IV	Baháwalpur	202327	714037	4221	＂ 250	－3312	
∇	Ráwalpindi	$\begin{array}{llll}33 & 35 & 16\end{array}$	$\begin{array}{llll}73 & 3 & 6\end{array}$	4828	＂ 342	－3110	
VI	Bharatpur	271327	772928	3859	＂ 152	－3458	
VII	Bangalore	125935	773558	958	W 045	－3827	
VIII	Dhárwár	152726	745035	1533	＂ 016	$\cdot 3766$	帤
IX	Porbandar	213820	$6937 \quad 6$	$29 \quad 2$	E 114	－3696	\％
X	Fyzabad	264727	82740	386	， 141	$\cdot 3528$	2
XI	Sambalpur	21283	836824	287	י 041	$\cdot 3733$	品
XII	Waltair	174257	83191	2120	＂ 012	＇3791	晰
2 III	Darjecling	265949	881639	3831	＂ 128	$\cdot 3567$	点
－XIV	Gaya	244630	845854	3425	， 12	＇3660	穿
$\Sigma \nabla$	Secunderábád	172711	782910	2021	． 011	$\cdot 3795$	．${ }^{\text {a }}$
XVI	Bhusával	21246	7547 lB	2712	，， 046	$\cdot 3682$	
XVII	Jubbulpore	$\begin{array}{llll}23 & 8 & 57\end{array}$	795644	3115.	＂ 10	－3639	
XVIII	Tavoy ．	$14 \quad 450$	$98 \quad 1230$	128	－， 023	－3958	－
XIX	Lashio ．	225647	074440	3120	－ 038	－3765	
$\mathbf{X X}$	Akyab ．	$\begin{array}{lll}20 & 75\end{array}$	$\begin{array}{llll}92 & 5318\end{array}$	2529	＂ 035	$\cdot 3834$	
XXI	Silchar or Cáchár	244943	924721	3446	－ 13	$\cdot 3690$	
XXII	Dibrugarh	272024	945540	3938	$\cdots 18$	－3581	

[^3]
VI.-Tidal Operations.

By Mr. C. F. Erskine.

No. 16 Party.

Work of the year.-During the yar under report tidal registrations by

Imperial Officer.
Mr. C. F. Erskine, in charge.
P ovincial Officers.
Messra. H. G. Shaw and Syed Zille Hasnain.
Subordinale Establishment.
1 Clerk, 15 Computers, Artificers and 3 Tidal Observatory Clerks.
self-registering tide-gauges were recorded at the ports of Aden, Karáchi, Apollo Bandar (Bombay), Prince's Dock (Bombay), Madras, Kidderpore, Rangoon, Moulmein and Port Blair. In addition, tide pole readings of high and low waters were taken during daylight at the ports of Bhávnagar, Akyab and Chittagong, with
the ${ }^{\circ}$ object of comparing the actual times and heights with the predictions; all the observations were made under the direction of this department and under the immediate control of the Port Officers concerned.

The reduction by harmonic analysis of the observations for 1909 of the 9 stations named above has been completed. The tide tables for 1911 have arrived in India and have been distributed. The work of publication of the tide tables for 40 ports for the year 1913 is in progress in England. Data for these predictions were despatched from the office in Dehra Dun in January 1910.

List of Tidal Stations.-The following table gives a list of the 42 ports at which tidal observations have been registered, together with the periods of observation from 1874 when tidal operations were commenced up to the present time.

The permanent stations are shown in italics; the others are minor stations which were closed on the completion of the requisite registrations.

Serial No.	Stations.	Automatic or Personal observations.	Date of commencement of observations.	Date of closing of observations.	Number of years of observ. ations.	Remares.
1	Suez . . .	Automatic	1897	1903	7	
2	Perim . . .	Ditto	1898	1902	5	
3	Aden . .	Ditto .	1879	Still morking,	31	
4	Maskst . .	Ditto	1893	1898	5	
5	Bushite	Ditto ${ }^{\text {² }}$	1892	1901	8	
6	Karáchi . .	Ditto	$\begin{aligned} & 1868 \\ & 1881 \end{aligned}$	1880 Still working.	$\left.{ }_{30} 13\right\} 43$	*Small Tide-gauge working.
7	Hanstal	Ditto	1874	1875	1	Tido Tables not publiahed. ${ }^{\text {, }}$
B	Navánar .	Ditto	1874	1875	1	Tido Tableanot published.
9	Okha Point .	Ditto	$\begin{gathered} 1874 \\ \text { Re-started } \\ 11004 \end{gathered}$	$\left.\begin{array}{l} 1875 \\ 1906 \end{array}\right\}$	$1\} 2$	Year 1004-05 is excluded.
10	Porbandar . .	Porbonal	1893	1804	2	
10A	Probandar .	Automatic	1808	1002	2	Yenrs 1808, 1809 and 1002 are excluded.
11	Port Albert Viotor (Kathiáwár).	Personal	1881	1882	1	.

Serial No.	Stations.	Automatio or Personal observa. tions.	Date of Commencement of oberva. tions.	Date of closing of observations.	Number of years of obervations.	Remaris.
114	Port Albert Victor (Kathiéwár)	Automatio	1900	1003	4	
12	Bhírnagar - .	Ditto	1889	1804	5	Tide-polo readinga atill taken.
13	$\begin{gathered} \text { Bombry } \\ \text { Bandar }) \end{gathered} \quad \text { (Apollo }$	Ditto	1878	Still morking.	32	
14	Bombay (Prince's Dock)	Ditto	1888	Still working.	22	Property of Port Trust.
15	Mormugão (Goa)	Ditto	1884	1889	5	
16	Kárwér . .	Ditto	1878	1883	5	
17	Beypore . .	Ditto	1878	1884	6	
18	Cochin . . .	Ditto	1886	1892	6	-
19	Tuticorin . .	Ditto	1888	1893	5	
20	Minicoy . .	Ditto	1891	1800	5	
121	Gallo . . .	Ditto	1884	1890	6	
22	Colombo . .	Ditto .	1884	1890	6	
23	Trincomalee . .	Ditto .	1890	1806	6	
24	Pámban Paes -	Ditto .	1878	1882	4	0
25)	Negapatam . -	Ditto	1881	1888	5	Years 1883.84.85 are excluded.
26	Madras . .	Ditto	$\begin{gathered} 1880 \\ \text { Re-started } \\ 1895 \end{gathered}$	1890 Still working.	$\left.\begin{array}{l} 10 \\ 15 \end{array}\right\} 25$	
27	Cocanáde . .	Ditto	1886	1891	6	*
2 H	Vizagapatam . .	Ditto	1879	1885	6	
29	Falbe-point . .	Ditto	1881	1885	4	
30	$\begin{array}{cl} \text { Dublat } \\ \text { Island) } & \text { (Saugor } \\ \hline \end{array}$	Ditto	1881	1886	5	
31	Diamond Harbour .	Ditto	1881	1886	5	
32	Kidderpore . .	Ditto	1881	Still worlting.	20	
33	Chittagong . .	Ditto	1886	1891	5	Tide-pole readings still taken.
34	Akyab . . .	Ditto	1887	1892	${ }^{5}$	Tide-pole readings stiii taken.
35	Diamond Island .	Ditto .	1805	1890	5	
38	Bassein (Burma)	Ditto	1902	1903	2	
$\checkmark 37$	Elephant Point .	Ditto	$\begin{gathered} 1880 \\ \text { Re-started } \\ 1884 \end{gathered}$	$\left.\begin{array}{l} 1881 \\ 1888 \end{array}\right\}$	5	Year 1880-81 is excluded,
38	Rangoon . . .	Ditto	1880	Still working	30	
39	Amberst . .	Ditto	1880	1886	6	
40	Moulmein . .	Ditto	$\begin{gathered} 1880 \\ \text { Re-started } \\ 1000 \end{gathered}$	1886 Still worling.		-
' 41	Mergui . . .	Ditto	1880	1894	E	
42	Port Blair . .	Ditto	1880	Still working.	30	

Working of Observatories.

Aden.-This observatory was inspected by Mr. Syed Zille Hasnain in February 1910. The observatory was found in good order, but the communication hole at the bottom of the float cylinder had become enlarged, the result being that the sea water flowed too freely in and out of the cylinder, causing at times great ${ }^{*}$
oscillation of the float, which affected the movement of the pencil on the diagram. The Port Engineer of Aden has been requested to have a new cylinder made and arrangements will be made at the time of the next inspection of this observatory to remove the old cylinder, and fix a new one in its place.

With the exception of a few short interruptions, owing to the pencil failing to mark, or to the stoppage of the driving clock, the tide-gauge has worked well during the past year.

Karáchi.-This observatory was inspected by Mr. C. F. Erskine assisted by Mr. Syed Zille Hasnain, in February 1910. The tide-gauge and the auxiliary instruments were thoroughly overhauled and cleaned, and the cylinder was cleared of mud both from the inside and outside.

No interruptions have occurred either in the registrations of the tide-gauge or of the auxiliary instruments during the past year.

Apollo Bandar (Bombay).-This observatory was inspected by Mr. C. F. Erskine assisted by Mr. Syed Zille Hasnain in January and February 1910. The observatory was found neat and clean, but the tide-gauge was in need of cleaning. After having been thoroughly cleaned the instrument was left in adjustment and in good working order.

During the past year there have been three minor interruptions in the tidal registrations due to the stoppage of the driving clock.

Prince's Dock (Bombay).-This observatory was inspected by Mr. C. F. Erskine assistrd by Mr. Syed Zille Hasnain, in January and February 1910. On overhauling the tide-gauge it was discovered that from some unknown cause the band had a double iwist in it near its junction with the float; owing to this the float was raised nearly three quarters of an inch, and in consequence there was a corresponding change in the working zero of the tide-gauge. The float at this observatory was not provided with a swivel on the clip where it was connected with the band : to remedy this defect a new float with a swivel at the top has been substituted for the old one; there will now be no risk of a similar accident occurring again.

During the past year there have been several interruptions in the tidal registrations, ranging from two to twenty-seven hours, due to the pencil wire breaking; this is a contingency it is impossible to guard against.

Madras.-This observatory was inspected by Mr. C. F. Erskine assisted by Mr. Syed Zille Hasnain in January 1910. It was found clean and tidy and the tide-gauge was working well.

There have been no interruptions in the tidal registrations during the year under report.

Kidderpore.-This observatory was inspected by Mr. C. F. Erskine assisted by Mr. Syed Zille Hasnain, in November 1909. The tide-gauge was found to be working well ; an examination of the daily reports showed that no breaks in the tidal registrations had occurred since the last inspection. The graduated staff was found to be slightly out of position; it was refixed correctly.

Rangoon.-This observatory was inspected by Mr. C. F. Erskine assisted by Mr. Syed Zille Hasnain, in December 1909. The cabin and the bridge leading to it required some minor repairs, and the Deputy Conservator of the Port was requested to have them done.

The tide-gauge was working satisfactorily and there hid been no breaks in the tidal registrations siuce the last inspection.

Last year all the auxiliary instruments were removed from this observatory as the Port Commissioners did not consider them necessary. Subsequently the Deputy Conservator of the Port intimated that the registrations of the above instruments were required by the port authorities. In conformity with this request an anemometer and a rain gauge were despatched to Rangoon from Dehra Dun, and these instruments were set up in the tidal observatory at the time of inspection. The Officer in charge of the Mathematical Instrument Office, Calcutta, was asked to supply 1 standard barometer, 1 self-registering barograph and a maximum and minimum thermometer. These instruments had not arrived by the time the inspecting officers left Rangoon, but have since been received and set up at the observatory.

Moulmein.-This observatory was inspected by Mr. C. F. Erskine assisted by Mr. Syed Zille Hasnain, in December 1909. The tide-gauge was found in working order but was greatly in need of cleaning. It was thoroughly overhauled and cleaned and left in correct adjustment.

A few minor interruptions in the tidal registrations have occurred during the past year, these being chiefly due to the stoppage of the driving clock.

Port Blair.-This observatory was inspected by Mr. Syed Zille Hassain in December 1909. On taking the tide-gauge to pieces for cleaning purposes, it' was found that through corrosion the float had leaked considerably, and that there was a great deal of water in it. The float was carefully repaired and refixed. The cylinder at this observatory was a very old one and the communication hole in it had become too large. A new cylinder was therefore made under the supervision of the Port Officer. The old cylinder was removed with some difficulty, and the new one was fixed in position. The tide-gauge and the auxiliary instruments were thoroughly overbauled and cleaned and left in adjustment. The opportunity was also taken to have the observatory repaired.

Tidal Constants.-The tidal observations for a year at nine stations have been reduced, and the tabulated values of the tidal constants thus derived are appended. There are no arrears.

Values of tie Tidal Constants, Adien, 1909.

The following are the amplitudes (R) and epochs (ζ) dedaced from the 1909 observationa st Aden; and also the mean values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1909 observations.

Short Period Tides.

	$\mathrm{A}_{0}=5$.	fect.	
		$=152$	$=018$
			T, $\left\{\begin{array}{l}\mathrm{L} \\ \zeta\end{array}\right.$
		$\mathrm{Q}_{1}\left\{\begin{array}{r}\mathrm{H}= \\ \cdot 142\end{array}\right.$	$\mathrm{T}_{2}\left\{\begin{array}{r}\mathrm{H}\end{array} \mathrm{r}^{0} 018\right.$
		$\kappa=35^{\circ} \cdot 15$	$\kappa=191^{\circ} \mathrm{C} 28$
		$\left\{\begin{array}{l}\mathrm{R}= \\ 0\end{array}\right.$	
		$L_{1}\left\{\begin{array}{l} \\ \zeta\end{array}\right.$	$(\mathrm{MS})^{2}\left\{\begin{array}{l}\text { ¢ } \\ \zeta=28^{\circ} .07\end{array}\right.$
		$L_{3}\left\{\begin{array}{r}H \\ H\end{array} \quad .074\right.$	$(\mathrm{MS})_{4}\left\{\begin{array}{r}\mathrm{H}= \\ \hline 013\end{array}\right.$
		$\kappa=213^{\circ} \cdot 32$	$\mu=161^{\circ} 18$
		$\left\{\begin{array}{rrr}\mathrm{R}= & \cdot 433 \\ \% & 140^{0.81}\end{array}\right.$	R $=\begin{array}{r}\cdot 020 \\ 020.05\end{array}$
		$\underline{\kappa}=221^{\circ} 74$	$\kappa=950.55$
		$\underline{\mathrm{R}=} \quad \cdots$	($\mathrm{R}=\quad .068$
		$\lambda_{3}\left\{\begin{array}{l}\text { 相 } \\ \zeta=\end{array}\right.$	$2 \mathrm{~N}_{2}\left\{\begin{array}{l}Y=1520.55 \\ \mathbf{y}^{\circ}=15\end{array}\right.$
		$\lambda_{3}\left\{\begin{array}{l}\text { H }\end{array}=\ldots\right.$	$\mathrm{Na}_{2}\left\{\begin{array}{r}\mathrm{H}= \\ \hline 1810.98\end{array}\right.$
			$\kappa=1810.81$
		(R $=$ 146	
		$\nu_{2}\left\{\begin{array}{rrr}\zeta= & 267^{\circ} \cdot 09 \\ \mathrm{H}= & \cdot 1+1\end{array}\right.$	M, N$),\left\{\begin{array}{rrr}\zeta= & 18^{\circ} \cdot(13 \\ \mathrm{H}= & \cdot 010\end{array}\right.$
			($\boldsymbol{\kappa}=232^{\circ} 07$
		(R = ${ }^{071}$	($\mathrm{R}=0 \cdot 0.31$
			$\left(\mathrm{M}_{2} \mathrm{E}_{1},\left\{\begin{array}{l}\text { che } \\ \zeta\end{array}\right.\right.$
		$\mu_{2}\left\{\begin{array}{r}\text { H }\end{array}\right.$	$\left(\mathrm{M}_{2} \mathrm{E}_{1}\right)_{3}\left\{\begin{array}{r}\mathrm{H} \\ \mathrm{H}= \\ \quad 10030\end{array}\right.$
		$\left(\begin{array}{c}k=197^{\circ} 88\end{array}\right.$	$\underline{\mu=190.13}$
		$\left\{\begin{array}{r\|r} \mathbf{R}= & \ldots \\ \zeta= & \ldots \end{array}\right.$	(2) $\left\{\begin{array}{rlr}\mathrm{R} & = \\ \zeta & \cdot 011 \\ 2644^{\circ} \cdot 46\end{array}\right.$
		$\mathrm{R}_{\mathrm{g}}\left\{\begin{array}{cc}\zeta= & \cdots \\ \mathrm{H}= & \cdots \\ \kappa= & \cdots\end{array}\right.$	

Long Period Tides.

| $"$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Valles of tue Tidal Constants, Karaciit, 1908.

The following are the amplitudes (R) and eporhs (ζ) deduced from the $1 y 08$ observations at Karachi ; and also the mean values of the amplitudes (H) and of the epoohe (κ) for each particular tide evaluated from the 1908 observations.

Short Period Tides.

Long Period Tides.

Values of tie Tidal Constants at Karachi, 1909.
The following are the amplitules (R) and epoohs (ζ) deduced from the 1009 observations at Karachi; and also the mean values of the amplitudes (H) and of the epochs (x) for each particular tide evaluated from the 1909 observations.

Short Period Tides.

Long Period Tides.

Valdes of the Tidal Constants at Bombay, 1009.

The following are the amplitudes (R) and epochs (ζ) deduced from the 1909 observations at Bombay; and also the mean values of the amplitudes (H) and of the epoche (\boldsymbol{x}) for each particular tide evaluated from the 1908 observations.

Short Period Tides.

Long Period Tides.

Valiles or tile Tidal Constants, Princés Dock, 1909.
The following are the amplitudes (R) and epocbs (ζ) deduced from the 1909 observations at Prince's Dock; and also the mean values of the amplitudes (H) and of the epochs (\boldsymbol{n}) for each particular tide evaluated from the 1909 observations.

Short Period Tides.

Long Period Tides.

*				R	ζ	H	I
Lenar Modthly	Tide	.	-	0.49	$257^{\circ} 08$	051	$305^{\circ} \mathrm{C}$ ¢ \downarrow
" Fortnightly	"	-	.	$\cdot 033$	$306^{\circ} \cdot 06$. 029	$3+8^{\circ} 15$
Luni-Solar "	"	-	-	$\cdot 025$	$205^{\circ} 72$	025	$70^{\circ} .73$
Solar-Annual	"	-	.	$\cdot 154$	$115^{\circ} 38$	$\cdot 154$	$35^{\circ} \cdot 67$
, Semi-Annual	'	-	,	096	$355^{\circ} \cdot 69$	$\cdot 090$	$196^{\circ} \cdot 18$

Values of tae Tidal Congtants, Madras, 1809.

The following are the amplitudes (R) and epochs (ζ) deduced from the 1909 observations at Madras ; and also the mean values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1909 obscrvations.

Short Period Tides.

Long Period Tides.

Values of tie Tidal Constants, Kidderpore, 1909.
The following are the amplitudes (R) and epochs (i) deduced from the 1909 observations at Kilderpore ; and also the mean values of the amplituiles (H) and of the epochs ($\boldsymbol{\kappa}$) for each particular tide evaluated from the 1909 observations.

Short Period Tides.

Long Period Tides.

c				R	ζ	H	*
Lunar Monthly	Tide	'	,	-369	$316^{\circ} 4.2$	-382	$7{ }^{\text {2 }} 02$
" Fortnightly	"	-	-	'342	$340^{\text {c. } 21}$	-297	$27^{\circ} 17$
Lani-Solar "	"	-	-	$\cdot 880$	$177^{\circ} 62$	-888	$411^{0.58}$
Solar-Annual	"	-	-	$2 \cdot 769$	2280.80	2.769	$149^{\circ} 05$
, Semi-Annual	"	-	-	$\cdot 912$	125°	912	925 ${ }^{\circ} 54$

Valueg of tif Tidal Constants, Rangoon, 1909.

The following are the amplitudes (R) and epochs (ζ) deduced from the 1900 observations at Rangoon ; and also the nean values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1909 observations.

Short Period Tides.

Long Period Tides.

				R	ζ	II	κ
Luaar Monthly	Tide	.		$\cdot 143$	3: ${ }^{2} 9^{0.79}$	$\cdot 148$	$20^{\circ} \cdot 1{ }^{3}$
, Portnightly	"	-	.	$\cdot 153$	$338^{n} \cdot 31$	$\cdot 138$	$38^{\circ} \cdot 69$
Luni-Solar "	"	,	-	$\cdot 311$	$180^{\circ} 37$	314	$43^{n} \cdot 81$
Solar-Anuual	"	-		1-198	$228^{\text {c }} 72$	1.198	$1+5^{\circ} 9.95$
" Semi-Aınual		-	.	$\cdot 134$	$178^{\circ} \cdot 38$	$\cdot 134$	$18^{9} \cdot 85$
							10

Valoes of the Tidal Constants, Moulmein, 1909.
The following are the amplitudes (R) and epochs (ζ) deduced from the 1900 observations at Moulmein ; and also the mean values of the amplitudes (H) and of the epochs (x) for each particular tide evaluated from the 1909 observations.

Short Periol Tides.

$$
A_{o}=8 \cdot 603 \text { feet. }
$$

Long Period Tides.

Valieg of tee Tidal Constants, Pory Blair, 1909.
The following are the amplitudes (R) and epochs (ζ) deduced from the 1909 observationa at Port Blair ; and also the mean valucs of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated frem the 1909 observations.

Short Period Tides.
$\Delta_{0}=4.8 \mathrm{l} 8$ feet.

Long Period 7ides.

Sale of tide tables.-The amount realized on the sale of tide tables during the year ending September 1910 was Rs. 1,967-5-0.

Errors in predictions.-The five tabular statements which are apperded show the percentage ard amount of error in the predicted times ard beights of high and low water for the year 1909 at 12 stations, as determined by comparisons of the predictions given in the tide tables with the actual values measured from the tidal diagrams at 9 stations, and from the tide poles at 3 stations; the former are made in this office, and the latter by the port officials concerned.

TABLE A.

Statement showing the percentage and the amount of the errors in the predicted times of higk water at the various tidal stations for the year 1909.

TABLE B.

Statement showing the peroentage and the amount of the errors in the predicted times of low water at the various tidal stations for the year 1909.

TABLE C.

Statement showing the percentage and the amount of the errors in the predicted heights of high water at the various tidal stations for the year 1909.

TABLE D.

Statement showing the percentage and the amount of the errors in the predicted heights of low water at the various tidal stations for the year 1909.

TABLE E.

Table of average errors in the predicted times and heights of high and low water at the several tidal stations for the year 1909.

Stations.	Automatic or tidepole abservation 8.	Mean range at aprings in feet.	Average Errong.		
			Of time in minutes.	Of height in terms of the range.	Of height in inches.
Open Cogat.			H. W. L. W.	H. W. L. W.	H. W. L. W.
Aden . . .	Auto.	$6 \cdot 7$	6 9	.025 025	$2 \quad 2$
Karrohi . . .	Auto.	$9 \cdot 3$	$8 \quad 9$	'027 '027	3 3
Bharnagar . .	T. P.	31.4	06	. 013 '013	5 5
- Apollo Bandar	Auto.	13.9	98	.024 018	43
Bombay \{Prince's Dock .	Auto.	$13 \cdot 8$	10 0	. 624 -024	44
Madran . .	Auto ${ }_{\text {d }}$	3.5	108	. 071048	$3 \quad 2$
Akyab . .	T. P.	$8 \cdot 3$	1	. 020 . 020	22
Port Blair	Auto.	6.6	8 8	. 025 . 025	$2 \quad 2$
General Mean	.	.	$7 \quad 7$	-029 025
Kidderpore . .	Auto.	11.7	$18 \quad 16$. 043 -043	6 6
Chittagong - .	T. P.	13.3	1515	-041 044	77
Rangoon . .	Auto.	10.4	$12 \quad 13$. 025 . 041	68
Moulmein	Auto.	12.7	$14 \quad 17$. $059 \quad 040$	$9 \quad 7$
General Mean	"	"	$15 \quad 15$	${ }^{\circ} 043{ }^{\circ} 044$	\cdots

The foregoing statements for the year 1909 may be thus summarised :-
Percentage of time predictions within 15 minutes of actuals.

,					High water	$\begin{gathered} \text { Low } \\ \text { watert } \end{gathered}$
Per oeml. Per cents						
$\text { Open coast }\{$	6 at whi	icti	t	S. R. tide gauge	85	86
stations.	2 "	"	"	tide pole	100	99
$\underset{\text { stations. }}{\text { Riverain }}\{$	3 "	"	"	S. R. tide gauge	61	69
				tide pole	64	65

Percentage of height predictions within one-tenth of mean range of springs.

Comparison of the predictions at riverain stations.-The predictions for the riverain stations for the year 1909 were comparad with those for the previous year, with the following results. The predictions for high water times and heights for 1909 are about the same as in 1908 at all the riverain stations; for low water times they are the same at Rangoon, better at Kidderpore and Chittagong, and worse at Moulmein: for low water heights they are worse at Chittagong, and better at all the other riverain stations. The greatest difference between the actual and predicted heights of low water for 1909 at the riverain stations was as follows:-

Kidderpore \quad.
Chittagong $\quad-\quad 3^{\prime} 3^{\prime \prime}$ on 4th September 1909, actuals being higher.
Rangoon $\quad-\quad 2^{\prime} 0^{\prime \prime}$ on 3rd October 1909, actuals being higher.
Moulmein $\quad 2^{\prime} 0^{\prime \prime}$ on 14 th and 15th October 1909, actuals being lower.

VII.-Physiographical Changes.

By Colonel S. G. Burrard, R.E., F.R.S.

It is intended in future to maintain a record of all changes that may be noticed to have occurred or to be now occurring in the form and features of the land-surface of India. In order to ensure the co-operation of the several topographical parties the following instructions are being issued :-

Now that a new topographical survey of India is being commenced, officers are requested to include in annual narrative reports brief notes on any marked physiographical changes that may come under observation.
(i) The whole area of loose sand that constitutes the Rajputana desert is moving en masse towards the north-east under the influence of prevailing winds ; it will be of interest to ascertain in the course of the new survey to what extent the sand has advanced towards Ajmer and Delh; and Ferozepore since the last survey was made, and whether in its advance it is abandoning areas in Sind and Cutch which it formerly occupied.
(ii) When sand advances into regions watered by rain, it is carried by streams into the rivers and by rivers into the sea. Its advance may consequently not here be apparent. But in the struggle for mastery between the sand and the rivers, the courses of the latter are apt to be deflected. The Punjab rivers have been driven northwards and have been forced to combine by advances of aend from Rajputana; the Ghaggar has been choked and the Jumna has been pushed to the east. It will be of interest to learn whether the rivers are still retiring before the sand or whether they are holding their own.
(iii) If any considerable area that was formerly cultivated is found now to be desiccated, the change will be worthy of mention in narrative reports.
(iv) All rivers that meander over flat alluvial plains are apt to change their courses as their beds get raised by silt. It is of interest to know whether these changes of course are systematic, i.e., always towards one direction, or whether they are oscillatory. Are (for example) the junction-points of the Himalayan rivers, Gogra, Gandak, Kosi, etc., with the Ganges in Bengal all tending to move to the east?
(v) Changes in the position of coast-lines are always worthy of record, more especially if they appear to be systematic.
(vi) Very little is as yet known of the rate of growth of the deltas of the rivers of North and South India and of Burme. The effect of irrigation schemes upon deltaic growth is a subject of scientific interest.

PART II.

I.-The Photo-Litho Office.

By Lieutenant O. H. B. Trenchard, R.E.

An endeavour was made in last year's report, while recounting the progress of the different sections of the office, to estimate the value of Major Hedley's reorganisation scheme, which had been introduced at the beginning of that year, in connection with the satisfactory results of the year's work. Another year has passed during which a policy of consolidating the reforms and maintaining an improvement in methods has been aimed at. No changes of importance bave been made in the superior staff of the office, and this fact has materially contributed towards the end in view. The year under report is the first in which the new system of promotion, an essential feature of the reorganisation, has been applied on a large scale, and the results appear to be satisfactory in every way. In fact one may confidently predict that increased efficiency and additional progress in the futpre will depend on adherence to the broad lines of the reorganisation scheme.

The first steps to deal with the steadily growing congestion of space in the Photo Branch and Stores Section which was alluded to in last year's report have now been taken, and a comprehensive scheme which includes the erection of a second storey to that part of the building occupied by the Photo Branch and an enlargement of • certain of the Stores Section buildings has received the preliminary sanction of the Surveyor General.

Some time must probably elapse before this scheme is carried out in full, but it is to be hoped that every effort will be made to hasten actual building operations so that no mere physical check will be placed in the near future on the continuous expansion of work.

Рhoto Branch.
 Negative Section.

The outturn of finished negatives in square inches for the year amounts to $1,943,889$ at an average cost of Re. 0-5-7 per 100 square inches as compared with $2,173,868$ square inches at Re. $0-4-9$ per 100 in $1908-09$ and $1,649,862$ square inches at Re. 0-6-7 in 1907-08. The slight diminution in outturn and increase in cost is accounted for by a marked decrease in the number of reductions of planetable sections supplicd and a corresponding increase in half-tone negatives of bill shading, a class of work necessarily involving greater skill and higher chemical expenditure. The quality of the negatives has been well maintained, but the difficulty of effecting by purely photographic processes any material improvement in reproduction of an indifferently drawn and badly typed original has yet to be fully overcome.

' Retouching Section.

The figures given above for negatives apply also to this section. Outturn by area, however, is hardly a fair gauge of the work done, since the proportion of colour . negatives to the total dealt with increases yearly, and these require far nore labour than plain negatives.

A noticeable improvement has been made in the examination of furished uegatives.

Process Engraving Section.

The outturn in photogravure plates and half-tone and line blocks is 371 as compared with 305 in the previous year, and the excess of income over expenditure amounts to Rs. 4,836 as compared with Rs. 3,360.

Although the minimum rates charged for half-tone and line work were reduced from Rs. 1-8-0 per square inch to Re. 1 and as. 10 per square inch respectively in 1908, a further reduction to as. 8 and as. 6 is contemplated in the near future with the object of attracting an increased volume of work from present sources, and from others, such as scientific societies, to whom the present rates are even now prohibitive. The section is now fully able to increase its outturn without numerical reinforcement or loss of working profits.

The new Platen printing machine, the installation of which was just mentioned in last year's report, has been successfully employed in printing all the half-tone and the majority of line work formerly undertaken by the Letterpress Section, and also in high grade proving.

Colour photography by what is known commercially as the half-tone threecolour process was successfully introduced for the first time by the Manager, Photo - Branch. This process in India presents difficulties not met with in Europe or near a centre of photographic manufacture. The rapidity with which colour-sensitive commercial dry plates deteriorate in Calcutta, their initial high cost and the difficulty of foretelling requirements, all tend to make their employment out of the - question for the work of the department. The other alternative is to use plates coated with collodion emulsion, of which perhaps the best known is that manufactured by Dr. Albert of Berlin. Attempts have been made from time to time to introduce it in this office, but without success, owing to its rapid deterioration at any temperature above $50^{\circ} \mathrm{F}$.

In 1907 Mr . Taylor took up the question of manufacturing an emulsion which would be workable in Calcutta, and succeeded in making up by an entirely new and revolutionary method an emulsion which met the requirements. He has since been steadily working to perfect it, and such good results have been obtained that he has overcome another difficulty met with in colour reproduction in India, namely, the comparatively low skill of the native etcher which renders satisfactory results unattainable unless colour negatives can be made to give an accurate reproduction of an original without retouching.

At the present time the Photo Branch is able to prepare plates to any reasonable size with colour sensitiveness equal to or excelling the best obtainable dry plate. The experimental work is, however, not complete and the actual procedure has not been published.

Litho Branch.

Proving and Printing Sections.

In last year's report it was recorded that the old reproach to the office, arrears of publication due to lack of capacity to deal with work in hand, had at last been done away with ; it is now still more a thing of the past.

Despite the credit due to the Litho Branch for this achievement, the situation is not entirely satisfactory. Reorganisation has effected order out of the chaos, as far as this branch is particularly concerned, in the short space of three or four years and that without increasing the total cost of the branch.

The certainty of a large increase in the amount of departmental work to be indertaken in the near future dispels any possible inference that we are now in a
position to effect a reduction of establishment. The difficulty is to find a safficiency of the kind of work required to tide the Litho Branch over the immediate present.

Much economy both of time and cost has been effected, especially in the Proving Section, by an increasing realization throughout the department of the principle that originals for reproduction in colours should be so carefully scrutinized before submission as to render the supply of two sets of proofs unnecessary. It is now becoming more and more an exception to furnish coloured proofs of the standard sheets; results seem to prove that little danger of inaccuracy is incurred by this experiment, and it is hardly necessary to add that publication is greatly expedited. A certain amount of extra work is of course thrown on the Examination Section of this office, but this is more than counterbalanced by the necessary decrease in the former risk of perfunctory examination.

With regard to the machines, the quality of the printing bas certainly not deteriorated, the average outturn for any full working day is a trife bigger, and oue or two of the native printers have shown marked improvement.

II.-'The Mathematical Instrument Office.

By Captain R. H. Thomas, R:E.

During the year under review, namely, from lst April 1909 to 31st March 1910, there has been a large falling off in the demands made on this office and the accounts of the two departments, store and workshop, show deficits of Rs. 20,176 and Rs. 15,270 , respectively.

With regard to the former figure it will be seen from the table below that the requisitions made on the stores have decreased by over a lakh of rupees as compared with the previous years, and consequently the amount brought to credit in the profit and loss statement has diminished by approximately Rs. 25,000 , which would have more than covered this loss.

The deficit of Rs. 15,270 on the workshop is also explained in item 2 of the table below which shows that the demands made on the workshop show a shrinkage of about half a lakh, while standing charges, such as supervision, rent, interest on plant and material depreciation, clerical labour, etc., amounting in all to Rs. 65,492, a say 30 per cent. of the total outlay, were incapable of any reduction.

Table of comparative values for the last three years.

	1907-08.	1909-09.	1909-10.
	Rs.	Rs.	Rs.
1. Value of instruments issued to public offices	3,66,334	3,31,230	2,38,332
2. Value of work done in workshops -	2,54,910	2,41,215	1,88,411
3. Value of reprirs to instruments repaired and returned in service. able condition.	42,542	52,278	55,774
4. Vhiue of instruments received as no longer required.	70,486	71,241	53,446
5. Value of instruments manufactured in workshops for serviceable store.	1,11,901	91,571	53,036
f. Value of instruments and materials obtained from England	4,94,985	4,56,322	2,12,931
7. Value of instruments purchnsed locally	1,043	3,052	1,948
8. B ots value of atock of instruments in the serviceable store	7,62,415	9,77,261	10,22,554
9 Buok value of stock of instruments in repairable store	98,578	1,21,746	81,381

The average number of employés and their pay were 365 at Rs. 81,412 in 1907-08, 395 at Rs. 85,457 in 1908-09 and 353 at Rs. 79,810 in 1909-10.

The progress made by the workshops in the way of manufacture has been well maintained, but owing to the falling off in demand for such instruments as optical squares, plane-tables and stands, chains and sight rules, the output has been considerably less than in former years. On the other hand more delicate instruments, such as $5^{\prime \prime}$ Everest theodolites, $6^{\prime \prime}$ Quintants, Cooke's DeLisle clinometers, scales and offsets, protractors, Cooke's reversible levels, curve pens and hand presses, have been put in hand.

During the year a large plan-board was designed and constructed for use in the Photo-Litho studio ; it has a surface of 11 feet 9 inches by 10 feet 3 inches. This is the largest adjustable plan-board that has ever been made and used in India; owing to the fact that all the weight is taken by a ball thrust there is no difficulty in icvelling it. ${ }^{\prime}$

The Photo-Litho Office also asked the Mathematical Instrument Ofice to make up a hand press, having the down pressure taken up by surface bearers or parallels. similar to a proof printing press, the object of the surface bearers being to enable inexperienced draftsmen to give a uniform blackness of typing. The advisability of accepting this pattern is still under consideration.

The Southampton pattern hand press was also remodelled; the keyway was replaced by bearers or guides working against the type box, an improvement which has greatly increased the life and efficiency of the instrument.

Experiments were undertaken with a view to manufacture mirrors for argand lamps by an electro deposit process. A small mirror was made and the result was quite satisfactory, but unfortunately when a full size mirror was attempted numerous difficulties arose, due principally to our native labour not having enough experience. However, it is hoped that further and renewed efforts will result in success.

To enable the Mathematical Instrument Office to turn out straight scales and offsets more rapidly and uniformly, an entire sutomatic dividing machine was obtained from the Société Genevoise of Geneva. After numerous experiments with different materials and cutting tools the office is now able to manufacture scales much cheaper, but owing to the rise in price of ebonite it has been found impossible to reduce the price of the finished scales.

During the year an electric travelling hoist capable of lifting ohe ton was installed in the packing section; the hoist travels along an I girder down the centre of the room, and so not only serves for lifting and lowering the cases, but also picks them up from the central gangway and carries them to the manhole and lowers them direct on to carts for despatching.

Another engraving machine by Messis. Taylor, Taylor and Hobson was received during the year; this and the machine previously received have practically superseded hand engraving.

The punching machine indented for from England also arrived and has done much useful work.

In October 1909 the Chief Engineer, Public Works Department, Madras, forwarded three practically new levels made by Messrs. Ottway \& Co., London, for examination and report. It seems that the Superintending Engineer to whom they were issued stated that they were of inferior make and badly finished and for this reason had returned them. The instruments were put to a very searching test and examined in every way for mechanical and optical defects.

- This work brought up the question as to the advisability of having some first class, permanent and more up-to-date testing appliances for fine opticalwork of this nature. At first it was thought it would be necessary to order a complete optical bench from England, but after much investigation and correspondence with the India Store Department, it was decided to construct one ourselves which would be more adapted to Indian labour.

Stock-taking of all the stores has been carried out during the year, and where discrepancies have been found, the necessary enquiries and book corrections were made.

The price list mentioned in last year's report was compl ted and was being passed through the press when the year closed.

GPGBINTENDENT GOVERNMENR PRINTING, NDLA 4, Bamman maney

[^0]: - Revision 1903 -04 commences from this honch-mark.

[^1]: - As will be eeen from the dates, this station oame after Bilaspur.

[^2]: (Nore,-Mnoneta Nos, 4 and 10 wore compared just befure this hargo drep in tho woment of $17: \mathrm{rg}$ do not elow thi ; cliange.)

[^3]: Note．－Tbe above values of Dip，Declination，and Horizontal Force are uncorreoted for secular ohange， diumal varintion，instrumental differences，etc．，and are to bo considered preliminary values only．

 Where blanks occur，values have already been found during previons field seasons，or the observations have not been comploted．

 All Lungitudea are referable to that of the Madras Observatory taken at the value $80^{\circ} 1 \mathbf{4}^{\prime} \mathbf{4 7}$＊ast from Greenwioh．

